a) Đổi biến \( t = x + 3 \Rightarrow x – 2 = t – 5\) . Khi x = - 2 thì t = 1, khi x = 4 thì t = 7, ta có:
\(\int\limits_{ - 2}^4 {{{({{x - 2} \over {x + 3}})}^2}dx = \int\limits_1^7 {(1 - {{10} \over t} + {{25} \over {{t^2}}}} } )dt\)
\(= (t - 10\ln t - {{25} \over t})\left| {\matrix{7 \cr 1 \cr} } \right. = 27{3 \over 7} - 10\ln 7\)
b)\(\int\limits_{ - 4}^6 {(|x + 3| - |x - 4|)dx}\)
\( = - 7\int\limits_{ - 4}^{ - 3} {dx} + \int\limits_{ - 3}^4 {(2x - 1)dx} + \int\limits_4^6 {7dx} = 7\)
c) Đổi biến \(t = \sqrt {x + 7} \) , ta có \(I = \int\limits_2^3 {{{2tdt} \over {t + 3}}} = 2 - 6\ln 1,2\)
Nếu đổi biến \(t = \sqrt {x + 7} + 3\) thì ta có \(I = \int\limits_5^6 {(2 - {6 \over t})dt} \)
d) Đổi biến \(t = 1 + 4\sin x\) , ta có \(I = {1 \over 4}\int\limits_1^5 {{{dt} \over t}} = {1 \over 4}\ln 5\)
e) Đổi biến \(t = {x^5}\)
\(\eqalign{
& I = {1 \over 5}\int\limits_1^{32} {{{tdt} \over {{t^2} + 4t + 4}}} \cr
& = {1 \over 5}\int\limits_1^{32} {{{(t + 2 - 2)dt} \over {{{(t + 2)}^2}}}} \cr
& = {1 \over 5}\int\limits_1^{32} {{\rm{[}}{1 \over {t + 2}} - {2 \over {{{(t + 2)}^2}}}{\rm{]}}dt} \cr
& = {1 \over 5}\left[ {\ln (t + 2) + {2 \over {t + 2}}} \right]\left| {\matrix{{32} \cr 1 \cr} = {1 \over 5}(\ln {{34}\over 3} - {{31} \over {51}})} \right. \cr} \)
g) Đặt \(u = x + 2,dv = {e^{2x}}dx \Rightarrow du = dx,v = {1 \over 2}{e^{2x}}\)
Ta có \(I = {1 \over 2}(x + 2){e^{2x}}\left| {\matrix{3 \cr 0 \cr} } \right. - {1 \over 2}\int\limits_0^3 {{e^{2x}}} dx\)
\(= {1 \over 2}(5{e^6} - 2) - {1 \over 4}({e^6} - 1) = {3 \over 4}(3{e^6} - 1)\)
h) Đổi biến \(t = \sqrt {4 + x} \)
\(I = 2\int\limits_{\sqrt 6 }^3 {(1 + {1 \over {t - 2}} - {1 \over {t + 2}})dt}\)
\(= 2(t + \ln {{t - 2} \over {t + 2}})\left| {\matrix{3 \cr {\sqrt 6 } \cr} } \right. \)
\(= 2[3 - \sqrt 6 - \ln (25 - 10\sqrt 6 ){\rm{]}}\)