a) Tập xác định: D = R\{1}
Đạo hàm: \(y' = {1 \over {{{(x - 1)}^2}}}\)
Bảng biến thiên:
Các khoảng đồng biến là \(( - \infty ;1)\) và \((1; + \infty )\) :
Tiệm cận đứng x = 1 vì \(\mathop {\lim }\limits_{x \to {1^ + }} y = - \infty ;\mathop {\lim }\limits_{x \to {1^ - }} y = + \infty \)
Tiệm cận ngang y = 4 vì \(\mathop {\lim }\limits_{x \to \pm \infty } y = 4\)
Giao với các trục tọa độ: (0; 5) và \(({5 \over 4};0)\)
Đồ thị
b) Ta có: y’(2) = 1. Phương trình tiếp tuyến là y = x + 1
Diện tích của miền cần tìm là:
\(S = \int\limits_2^4 {(x + 1 - 4 + {1 \over {x - 1}})dx} = \int\limits_2^4 {(x - 3 + {1 \over {x - 1}})dx} = \ln 3\).