Với a dương và khác 1, ta có:
a) \({c^2}(x) - {s^2}(x) = {({{{a^x} + {a^{ - x}}} \over 2})^2} - {({{{a^x} - {a^{ - x}}} \over 2})^2}\)
\(= {{{a^{2x}} + {a^{ - 2x}} + 2 - {a^{2x}} - {a^{ - 2x}} + 2} \over 4} = {4 \over 4} = 1\)
d) \(t(2x) = {{{a^{2x}} - {a^{ - 2x}}} \over {{a^{2x}} + {a^{ - 2x}}}}\) . Mặt khác, ta có:
\(1 + {t^2}(x) = 1 + {({{{a^x} - {a^{ - x}}} \over {{a^x} + {a^{ - x}}}})^2} = {{2({a^{2x}} + {a^{ - 2x}})} \over {{a^{2x}} + {a^{ - 2x}} + 2}}\)
Ta biến đổi vế phải
\({{2t(x)} \over {1 + {t^2}(x)}} = 2{{{a^x} - {a^{ - x}}} \over {{a^x} + {a^{ - x}}}}.{{{a^{2x}} + {a^{ - 2x}} + 2} \over {2({a^{2x}} + {a^{ - 2x}})}}\)
\(= {{2({a^x} - {a^{ - x}}){{({a^x} + {a^{ - x}})}^2}} \over {2({a^x} + {a^{ - x}})({a^{2x}} + {a^{ - 2x}})}} = {{{a^{2x}} - {a^{ - 2x}}} \over {{a^{2x}} + {a^{ - 2x}}}}\)