+ Nhận xét: \(D\) luôn nằm giữa \(H\) và \(M\).
+ Chứng minh:
\(AD\) là đường phân giác của \(∆ABC\).
\(\Rightarrow \dfrac{{AB}}{{AC}} = \dfrac{{DB}}{{DC}}\) (tính chất đường phân giác của tam giác)
Mà \(AB < AC\) (giả thiết)
\( \Rightarrow DB < DC\) \( \Rightarrow DB + DC < DC + DC\)
\( \Rightarrow BD + DC < 2DC\) hay \(BC < 2DC\)
\( \Rightarrow DC >\dfrac{{BC}}{2}\)
Mà \(MC = \dfrac{{BC}}{2}\) (\(M\) là trung điểm của \(BC\))
\( \Rightarrow DC > MC\) \( \Rightarrow M \) nằm giữa \(D\) và \(C\) (1)
+ Mặt khác: \(\widehat {CAH} = {90^0} - \hat C\) (\(∆CAH\) vuông tại \(H\))
\(\hat A + \hat B + \hat C = {180^0}\) (tổng 3 góc ∆ABC)
\( \Rightarrow \widehat {CAH} = \dfrac{{\widehat A + \widehat B + \widehat C}}{2} - \widehat C\)
\( \Rightarrow \widehat {CAH} = \dfrac{{\widehat A}}{2} + \dfrac{{\widehat B}}{2} - \dfrac{{\widehat C}}{2}\)\(\, = \dfrac{{\widehat A}}{2} + \dfrac{{\widehat B - \widehat C}}{2}\)
Vì \(AB < AC\) \( \Rightarrow \widehat C < \widehat B \Rightarrow \widehat B - \widehat C > 0\)
Do đó: \(\widehat {CAH} > \dfrac{{\widehat A}}{2}\) hay \(\widehat {CAH} > \widehat {CAD}\)
\( \Rightarrow \) Tia \(AD\) nằm giữa hai tia \(AH\) và \(AC\)
Do đó \(D\) nằm giữa hai điểm \(H\) và \(C\) (2)
Từ (1) và (2) suy ra \(D\) nằm giữa \(H\) và \(M.\)