a) \(2x - 2 = 2\left( {x - 1} \right) \ne 0\) khi \(x - 1 \ne 0\) hay \(x \ne 1\).
\({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right) \ne 0\) khi \(x - 1 \ne 0\) và \( x + 1 \ne 0\)
hay \(x \ne 1\) và \( x \ne - 1\).
\(2x + 2 = 2\left( {x + 1} \right) \ne 0\) khi \(x + 1 \ne 0\) hay \(x \ne - 1\).
Do đó điều kiện để giá trị của biểu thức được xác định là \(x \ne - 1,\;x \ne 1\).
b)
\(\eqalign{
& \left( {{{x + 1} \over {2x - 2}} + {3 \over {{x^2} - 1}} - {{x + 3} \over {2x + 2}}} \right).{{4{x^2} - 4} \over 5} \cr
& = \left[ {{{x + 1} \over {2\left( {x - 1} \right)}} + {3 \over {\left( {x - 1} \right)\left( {x + 1} \right)}} - {{x + 3} \over {2\left( {x + 1} \right)}}} \right].{{4({x^2} - 1)} \over 5} \cr
& = {{{{\left( {x + 1} \right)}^2} + 3.2 - \left( {x + 3} \right)\left( {x - 1} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5} \cr
& = {{{x^2} + 2x + 1 + 6 - \left( {{x^2} - x + 3x - 3} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5} \cr
& = {{{x^2} + 2x + 1 + 6 - {x^2} + x - 3x + 3} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5} \cr
& = {{10} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5} \cr
& = {{10.4.\left( {x - 1} \right)\left( {x + 1} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right).5}} = 4 \cr} \)
Vậy biểu thức không phụ thuộc vào giá trị của biến \(x\).