Bài 1.
a) Điều kiện: \(x \ne 0\) và \(x \ne \pm 1.\)
\(A = {{1 - x + 2x} \over {1 - {x^2}}}:{{1 - x} \over x} = {{1 + x} \over {1 - {x^2}}}.{x \over {1 - x}}\)\(\; = {x \over {{{\left( {1 - x} \right)}^2}}}.\)
b) Điều kiện: \(y \ne 0\) và \(x \ne \pm y\) .
\(B = {{{x^2} + xy - {x^2} - {y^2}} \over {x + y}}.{{2y + x - y} \over {2y\left( {x - y} \right)}} \)\(\;= {{y\left( {x - y} \right)} \over {x + y}}.{{x + y} \over {2y\left( {x - y} \right)}} = {1 \over 2}.\)
Bài 2.
a) Điều kiện: \({x^2} - 49 \ne 0\) và \({x^2} + 7x \ne 0.\)
Ta có: \({x^2} - 49 = \left( {x - 7} \right)\left( {x + 7} \right);\)
\({x^2} + 7x = x\left( {x + 7} \right).\)
Vậy : \(x - 7 \ne 0;x + 7 \ne 0\) và \(x \ne 0 \Rightarrow x \ne \pm 7\) và \(x \ne 0\) .
b) \(P = {{x\left( {x + 21} \right) - 7\left( {x - 7} \right)} \over {x\left( {{x^2} - 49} \right)}}\)
\(\;\;\;\;\;\;\;= {{{x^2} + 21x - 7x + 49} \over {x\left( {{x^2} - 49} \right)}}\)
\(\;\;\;\;\;\;\; = {{{x^2} + 14x + 49} \over {x\left( {{x^2} - 49} \right)}}\)
\( \;\;\;\;\;\;\;= {{{{\left( {x + 7} \right)}^2}} \over {x\left( {{x^2} - 49} \right)}} = {{x + 7} \over {x\left( {x - 7} \right)}}.\)
c) Khi \(x = 5 \Rightarrow P = {{5 + 7} \over {5\left( {5 - 7} \right)}} = {{12} \over { - 10}} = - {6 \over 5}.\)
Bài 3. Biến đổi vế trái (VT) ta được:
\(VT = {2 \over {xy}}:{{{{\left( {x - y} \right)}^2}} \over {{{\left( {x - y} \right)}^2}}} \)
\(\;\;\;\;\;\;\;= {{2xy} \over {{{\left( {x - y} \right)}^2}}} - {{{x^2} + {y^2}} \over {{{\left( {x - y} \right)}^2}}} = {{2xy - {x^2} - {y^2}} \over {{{\left( {x - y} \right)}^2}}}\)
\(\;\;\;\;\;\;\; = - {{{{\left( {x - y} \right)}^2}} \over {{{\left( {x - y} \right)}^2}}} = - 1\)(đpcm).