Bài 7 trang 38 SGK Toán 9 tập 2

Trên mặt phẳng tọa độ (h.10), có một điểm \(M\) thuộc đồ thị của hàm số \(y = a{x^2}\).

              Hình 10

a) Tìm hệ số \(a\)

b) Điểm \(A(4; 4)\) có thuộc đồ thị không ?

c) Hãy tìm thêm hai điểm nữa (không kể điểm O) để vẽ đồ thị.

Lời giải

a) Vì \(M(2;1)\) thuộc hàm số \(y=ax^2\), thay \(x=2,\ y=1\) vào công thức hàm số, ta có:

\(1=a.2^2 \Leftrightarrow 1=a.4 \Leftrightarrow a=\dfrac{1}{4}\)

Khi đó , hàm số đã cho có dạng là: \(y=\dfrac{1}{4}x^2\)  (1).

b) Thay \(x=4,\ y=4\) vào công thức hàm số (1), ta được:

\(4=\dfrac{1}{4}.4^2 \) \(\Leftrightarrow 4=\dfrac{16}{4}\) (luôn đúng)

Vậy điểm \(A(4; 4)\) thuộc đồ thị hàm số \(y = \dfrac{1}{4}{x^2}\).

c)  Ta có điểm \(A'(-4;4)\) cũng đối xứng với điểm \(A(4; 4)\).

Điểm \(M'(-2; 1)\) đối xứng với điểm \(M(2; 1)\).

Vì đồ thị hàm số \(y=\dfrac{1}{2}x^2\) là đường cong đi qua gốc tọa độ, nhận trục \(Oy\) làm trục đối xứng nên \(A',\ M'\) cũng thuộc đồ thị.