Bài 82 trang 18 SBT toán 9 tập 1

Đề bài

a) Chứng mình: 

\( \displaystyle{x^2} + x\sqrt 3  + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\) 

b) Tìm giá trị nhỏ nhất của biểu thức: \({x^2} + x\sqrt 3  + 1\). Giá trị đó đạt được khi \(x\) bằng bao nhiêu? 

Lời giải

a) Ta có: 

\( \displaystyle{x^2} + x\sqrt 3  + 1 = {x^2} + 2x{{\sqrt 3 } \over 2} + {3 \over 4} + {1 \over 4}\)

\( \displaystyle\eqalign{
& = {x^2} + 2x{{\sqrt 3 } \over 2} + {\left( {{{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr 
& = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr} \)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b) Ta có:

\( \displaystyle{x^2} + x\sqrt 3  + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\)

Vì \( \displaystyle{\left( {x + {{\sqrt 3 } \over 2}} \right)^2} \ge 0\) với mọi \(x\) nên \( \displaystyle{\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \ge {1 \over 4}\)

Giá trị biểu thức \( \displaystyle{\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\) bằng \( \displaystyle{1 \over 4}\) khi \( \displaystyle{\left( {x + {{\sqrt 3 } \over 2}} \right)^2} = 0\)

Suy ra \( \displaystyle x =  - {{\sqrt 3 } \over 2}.\)