a) Thay \(x, y, z\) trong phương trình tham số của đường thẳng \(d\) vào phương trình tổng quát của mặt phẳng \((\alpha )\) ta được: \(t + 2\left( {1 + 2t} \right) + \left( {1 - t} \right) - 3 = 0\) \( \Leftrightarrow 4t = 0 \Leftrightarrow t = 0\)
Vậy đường thẳng d cắt mặt phẳng \((\alpha )\) tại M0(0; 1; 1).
b) Thay x, y, z trong phương trình tham số của d vào phương trình tổng quát của \((\alpha )\) ta được: \(\left( {2 - t} \right)\; + \left( {2 + t} \right) + 5 = 0\)\( \Leftrightarrow 0t = - 9\)
Phương trình vô nghiệm, vậy đường thẳng d song song với \((\alpha )\)
c) Thay x, y, z trong phương trình tham số của d vào phương trình tổng quát của \((\alpha )\) ta được: \(\left( {3 - t} \right) + \left( {2 - t} \right) + \left( {1 + 2t} \right) - 6 = 0\) \( \Leftrightarrow 0t\; = 0\)
Phương trình luôn thỏa mãn với mọi t.
Vậy \(d\) nằm trong \((\alpha )\).