Phương trình tham số của đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3t}\end{array}} \right.\)
Vecto chỉ phương của hai đường thẳng \(d\) và \(d’\) lần lượt là \(\overrightarrow a = ( - 1;2;3),\overrightarrow {a'} = (1; - 2;0)\).
Xét điểm M(1 – t; 2 + 2t; 3t) trên d và điểm M’(1 + t’; 3 – 2t’ ; 1) trên d’ ta có \(\overrightarrow {MM'} = (t' + t;1 - 2t' - 2t;1 - 3t)\).
MM’ là đường vuông góc chung của d và d’.
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\overrightarrow {MM'} .\overrightarrow a = 0}\\{\overrightarrow {MM'} .\overrightarrow {a'} = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - t' - t + 2 - 4t' - 4t + 3 - 9t = 0\\t' + t - 2 + 4t' + 4t = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5t' + 14t = 5}\\{5t' + 5t = 2}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{t = \dfrac{1}{3}}\\{t' = \dfrac{1}{{15}}}\end{array}} \right.\)
Thay giá trị của t và t’ vào ta được tọa độ M và M’ là \(M\left( {\dfrac{2}{3};\dfrac{8}{3};1} \right),M'\left( {\dfrac{{16}}{{15}};\dfrac{{43}}{{15}};1} \right)\)
Do đó \(\overrightarrow {MM'} = \left( {\dfrac{6}{{15}};\dfrac{3}{{15}};0} \right)\)
Suy ra đường vuông góc chung \(\Delta \) của d và d’ có vecto chỉ phương \(\overrightarrow u = (2;1;0)\)
Vậy phương trình tham số của \(\Delta \) là: \(\left\{ {\begin{array}{*{20}{c}}{x = \dfrac{2}{3} + 2t}\\{y = \dfrac{8}{3} + t}\\{z = 1}\end{array}} \right.\)