Đường thẳng \(\Delta \) đi qua điểm M0(1; 0; 0) và có vecto chỉ phương \(\overrightarrow u = (2;2;1)\).
Ta có \(\overrightarrow {{M_0}A} = (0;0;1),\)\(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow {{M_0}A} } \right] = (2; - 2;0)\)
\(d(A,\Delta ) = \dfrac{{|\overrightarrow n |}}{{|\overrightarrow u |}} = \dfrac{{\sqrt {4 + 4 + 0} }}{{\sqrt {4 + 4 + 1} }} = \dfrac{{2\sqrt 2 }}{3}\)
Vậy khoảng cách từ điểm A đến \(\Delta \) là \(\dfrac{{2\sqrt 2 }}{3}\).