a) Vì \(\left\{ \matrix{\overrightarrow {AB} = - \overrightarrow {BA} \hfill \cr \overrightarrow {AC} = - \overrightarrow {CA} \hfill \cr} \right.\)
Nên: \(\overrightarrow {AB} = 3\overrightarrow {AC} \) ta suy ra \(\overrightarrow {BA} = 3\overrightarrow {CA} \). Vậy a) là sai
b) Ta có:
\(\overrightarrow {AB} = - 3\overrightarrow {AC} \Rightarrow \overrightarrow {AC} + \overrightarrow {CB} = - 3\overrightarrow {AC}\)\( \Rightarrow \overrightarrow {CB} = - 4\overrightarrow {AC} \)
Vậy b) sai
c) \(\overrightarrow {AB} = - 2\overrightarrow {AC} + 5\overrightarrow {AD} \): Đẳng thức nàu chứng tỏ ba vecto \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) đồng phẳng, tức là 4 điểm \(A, B, C, D\) cùng nằm trong một mặt phẳng. Vậy c) đúng
d) \(\overrightarrow {AB} = - {1 \over 2}\overrightarrow {BC} \Rightarrow \overrightarrow {BA} = {1 \over 2}BC\)
Điều này chứng tỏ hai A là trung điểm của BC. Vậy d) sai
Kết quả: Trong bốn mệnh đề trên, chỉ có c) đúng.