Bài 6 trang 122 SGK Hình học 11

Cho hình lập phương \(ABCD.A’B’C’D’\)  cạnh \(a\).

a) Chứng minh \(BC’\) vuông góc với mặt phẳng \((A’B’CD)\)

b) Xác định và tính độ dài đoạn vuông góc chung của \(AB’\) và \(BC’\)

Lời giải

a) Ta có tứ giác \(BCC'B’\) là hình vuông nên \(BC’ ⊥ B’C\)   (1)

Mặt khác \(A’B’ ⊥ (BCC’B’)⇒ A’B’ ⊥ BC’\)                   (2)

Từ (1) và (2) suy ra: \(BC’⊥ (A’B’CD)\)

b) Do \(AD’//BC’\) nên mặt phẳng \((AB’D’)\) là mặt phẳng chứa \(AB’\) và song song với \(BC’\).

Ta tìm hình chiếu của \(BC’\) trên \(mp (AB’D’)\)

Gọi \(E, F\) là tâm của các mặt bên \(ADD'A’\) và \(BCC'B’\)

Từ \(F\) kẻ \(FI ⊥ B’E\). Ta có \(BC’ //AD'\) mà \(BC’ ⊥ (A’B’CD)\)

\(⇒ AD’ ⊥ (A’B’CD)\) và \(IF ⊂(A’B’CD)\)

\(AD’ ⊥ IF\)   (3)

\(EB’⊥IF\)   (4)

Từ (3) và (4) suy ra : \(IF ⊥ (AB’D’)\)

Vậy \(I\) là hình chiếu của \(F\) trên \(mp (AB’D’)\). Qua \(I\) ta dựng đường thẳng song song với \(BC’\) thì đường thẳng này chính là hình chiếu của \(BC’\) trên mp \((AB’D’)\)

Đường thẳng qua \(I\) song song với \(BC’\) cắt \(AB’\) tại \(K\). Qua \(K\) kẻ đường thẳng song song với \(IF\), đường này cắt \(BC’\) tại \(H\). \(KH\) chính là đường vuông góc chung của \(AB’\) và \(BC’\). Thật vậy:

\({\rm{IF}} \bot (AB'D') \Rightarrow IF ⊥ AB'\) và \(KH // IF\) suy ra \(KH ⊥ AB'\)

\(\left. \matrix{ BC' \bot (A'B'CD) \hfill \cr {\rm{IF}} \subset {\rm{(A'B'CD)}} \hfill \cr} \right\} \Rightarrow \left. \matrix{ {\rm{IF}} \bot {\rm{BC'}} \hfill \cr {\rm{KH//IF}} \hfill \cr} \right\} \Rightarrow KH \bot BC'\)

Tam giác \(EFB’\) vuông góc tại \(F\), \(FI\) là đường cao thuộc cạnh huyền nên \(\dfrac{1}{{I{F^2}}} = \dfrac{1}{{F{B^2}}} + \dfrac{1}{{F{E^2}}}\) với \(\left\{ \matrix{FB' = {{a\sqrt 2 } \over 2} \hfill \cr {\rm{EF = a}} \hfill \cr} \right.\)

Ta tính ra: \({\rm{IF}} = {{a\sqrt 3 } \over 3} \Rightarrow KH = {\rm{IF = }}{{a\sqrt 3 } \over 3}\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”