a) *) Vẽ đồ thị của hàm số \(y = x + \sqrt 3 \)
Cho x = 0 thì \(y = \sqrt 3 \). Ta có: \(A\left( {0;\sqrt 3 } \right)\)
Cho y = 0 thì \(x + \sqrt 3 = 0 \Rightarrow x = - \sqrt 3 \). Ta có: \(B\left( { - \sqrt 3 ;0} \right)\)
*) Cách tìm điểm có tung độ bằng \(\sqrt 3 \) trên trục Oy:
- Dựng điểm M(1;1). Ta có: \(OM = \sqrt 2 \)
- Dựng cung tròn tâm O bán kính OM cắt trục Ox tại điểm có hoành độ bằng \(\sqrt 2 \) .
- Dựng điểm \(N\left( {1;\sqrt 2 } \right)\). Ta có: \(ON = \sqrt 3 \)
- Vẽ cung tròn tâm O bán kính ON cắt trục Oy tại A có tung độ \(\sqrt 3 \) cắt tia đối của Ox tại B có hoành độ \(-\sqrt 3 \) .
Đồ thị của hàm số \(y = x + \sqrt 3 \) là đường thẳng AB.
*) Vẽ đồ thị của hàm số \(y = 2x + \sqrt 3 \)
Cho x = 0 thì \(y = \sqrt 3 \). Ta có: \(A\left( {0;\sqrt 3 } \right)\)
Cho y = 0 thì \(2x + \sqrt 3 = 0 \Rightarrow x = - \dfrac{{\sqrt 3 }}{2}\). Ta có: \(C\left( { - \dfrac{{\sqrt 3 } }{2};0} \right)\)
Đồ thị của hàm số \(y = 2x + \sqrt 3 \) là đường thẳng AC
b) Ta có: \(tg\widehat {ABO} = \dfrac{{OA}}{{OB}} = \dfrac{{\sqrt 3 }}{{\sqrt 3 }} = 1\)\( \Rightarrow \widehat {ABO} = {45^0}\) hay \(\widehat {ABC} = {45^0}\)
\(tg\widehat {ACO} = \dfrac{{OA}}{{OC}} = \dfrac{{\sqrt 3 }}{{\dfrac{{\sqrt 3 }}{ 2}}} = 2\)\( \Rightarrow \widehat {ACO} = {63^0}26'\)
Ta có: \(\widehat {ACO} + \widehat {ACB} = {180^0}\) (hai góc kề bù)
Suy ra : \(\widehat {ACB} = {180^0} - \widehat {ACO}\)\( = {180^0} - {63^0}26' = {116^0}34'\)
Lại có: \(\widehat {ACB} + \widehat {ABC} + \widehat {BAC} = {180^0}\)
Suy ra:
\(\eqalign{
& \widehat {BAC} = {180^0} - \left( {\widehat {ACB} + \widehat {ABC}} \right) \cr
& = {180^0} - \left( {{{45}^0} + {{116}^0}34'} \right) = {18^0}26' \cr} \)