Bài 16 trang 64 SBT toán 9 tập 1

Đề bài

Cho hàm số \(y = \left( {a - 1} \right)x + a\).   

a) Xác định giá trị của \(a\) để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(2.\)

b) Xác định giá trị của \(a\) để đồ thị hàm số cắt trục tung tại điểm có hoành độ bằng \(-3.\)

c) Vẽ đồ thị của hai hàm số ứng với giá trị của a tìm được ở các câu a) , b) trên cùng hệ  trục tọa độ \(Oxy\) và tìm tọa độ giao điểm của hai đường thẳng vừa vẽ được.

Lời giải

a) Hàm số \(y = \left( {a - 1} \right)x + a\,\,\,\,\left( {a \ne 1} \right)\) là hàm số bậc nhất có đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(y = 2\) nên \(a = 2.\)

b) Hàm số \(y = \left( {a - 1} \right)x + a\,\,\,\,\left( {a \ne 1} \right)\) là hàm số bậc nhất có đồ thị hàm số cắt trục hoành tại điểm có hoành độ \(x = -3\) nên tung độ giao điểm này bằng 0.

Ta có: 

\(\eqalign{
& 0 = \left( {a - 1} \right)\left( { - 3} \right) + a \cr 
& \Leftrightarrow - 3a + 3 + a = 0 \cr 
& \Leftrightarrow - 2a = - 3 \Leftrightarrow a = 1,5 \cr} \)

c) Khi \(a = 2\) thì ta có hàm số: \(y = x + 2\)

Khi \(a = 1,5\) thì ta có hàm số: \(y = 0,5x + 1,5\)

* Vẽ đồ thị của hàm số \(y = x + 2\)

Cho \(x = 0\) thì \(y = 2.\) Ta có: \(A(0;2)\)

Cho \(y = 0\) thì \(x = -2.\) Ta có: \(B(-2;0)\)

Đường thẳng AB là đồ thị hàm số \(y = x + 2\).

* Vẽ đồ thị của hàm số \(y = 0,5x + 1,5\)

Cho \(x = 0\) thì \(y = 1,5.\) Ta có: \(C(0;1,5)\)

Cho \(y = 0\) thì \(x = -3.\) Ta có : \(B(-3;0)\)

Đường thẳng \(CD\) là đồ thị hàm số \(y = 0,5x + 1,5\)

* Tọa độ giao điểm của hai đường thẳng .

Ta có:

\(M(x_1;y_1)\) thuộc đường thẳng \(y = x + 2\) nên \({y_1} = {x_1} + 2\)

\(M(x_1;y_1)\) thuộc đường thẳng \(y = 0,5x + 1,5\) nên \({y_1} = 0,5{x_1} + 1,5\)

Suy ra:

\(\eqalign{
& {x_1} + 2 = 0,5{x_1} + 1,5 \cr 
& \Leftrightarrow 0,5{x_1} = - 0,5 \cr 
& \Leftrightarrow {x_1} = - 1 \cr} \)

\({x_1} =  - 1 \Rightarrow {y_1} =  - 1 + 2 = 1\)           

Vậy tọa độ giao điểm của hai đường thẳng là \(M(-1;1). \)