a) \( \displaystyle 1{{13} \over {15}}.{\left( {0,5} \right)^2}.3 + \left( {{8 \over {15}} - 1{{19} \over {60}}} \right):1{{23} \over {24}}\)
\( \displaystyle = {{28} \over {15}}.{\left( {{1 \over 2}} \right)^2}.3 + \left( {{8 \over {15}} - {{79} \over {60}}} \right):{{47} \over {24}}\)
\( \displaystyle = {{28} \over {15}}.{1 \over 4}.3 + {{8.4 - 79} \over {60}}:{{47} \over {24}}\)
\( \displaystyle = {7 \over 5} + {{ - 47} \over {60}}.{{24} \over {47}}\)
\( \displaystyle = {7 \over 5} + {{ - 2} \over 5}\)
\( \displaystyle = {5 \over 5} = 1\)
b) \( \displaystyle \dfrac{{\left( {\dfrac{{{{11}^2}}}{{200}} + 0,415} \right):0,01}}{{\dfrac{1}{{12}} - 37,25 + 3\dfrac{1}{6}}}\)
\( = \dfrac{{\left( {\dfrac{{121}}{{200}} + \dfrac{{415}}{{1000}}} \right):\dfrac{1}{{100}}}}{{\dfrac{1}{{12}} - \dfrac{{149}}{4} + \dfrac{{19}}{6}}}\)
\( = \dfrac{{\left( {\dfrac{{121}}{{200}} + \dfrac{{83}}{{200}}} \right):\dfrac{1}{{100}}}}{{\dfrac{{1 - 447 + 38}}{{12}}}}\)
\( \displaystyle = \left( {{{204} \over {200}}:{1 \over {100}}} \right):{{ - 408} \over {12}}\)
\( \displaystyle = {{102} \over {100}}.{{100} \over 1}.{{ - 12} \over {408}}\)
\( \displaystyle = {{ - 12} \over 4} = - 3\)