Bài 18 trang 22 SGK Đại số và Giải tích 12 Nâng cao

Bài 18. Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) \(y = 2{\sin ^2}x + 2\sin x - 1\)

b) \(y = {\cos ^2}2x - \sin x\cos x + 4\)

Lời giải

a) Đặt \(t = \sin x, - 1 \le t \le 1\)

\(y = f\left( t \right) = 2{t^2} + 2t - 1\)

Ta tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( t \right)\) trên đoạn \(\left[ { - 1;1} \right]\). Đó cũng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên \(\mathbb R\).

\(f'\left( t \right) = 4t + 2;f'\left( t \right) = 0 \Leftrightarrow t =  - {1 \over 2}\)

Ta có: \(f\left( { - 1} \right) =  - 1;f\left( { - {1 \over 2}} \right) =  - {3 \over 2};f\left( 1 \right) = 3\)

\(\mathop {\min \,\,f\left( t \right)}\limits_{t \in \left[ { - 1;1} \right]}  =  - {3 \over 2};\,\,\,\,\,\,\mathop {\max \,\,f\left( t \right)}\limits_{t \in \left[ { - 1;1} \right]}  = 3\)

Vậy \(\mathop {\min \,\,y}\limits_{x \in {\mathbb{R}}}  =  - {3 \over 2};\,\,\,\,\,\,\mathop {\max \,\,y}\limits_{x \in {\mathbb{R}}}  = 3\).

b) Ta có: \(y = 1 - {\sin ^2}2x - {1 \over 2}\sin 2x + 4 =  - {\sin ^2}2x - {1 \over 2}\sin 2x + 5\)

Đặt \(t = \sin 2x, - 1 \le t \le 1\)

\(y = f\left( t \right) =  - {t^2} - {1 \over 2}t + 5;f'\left( t \right) =  - 2t - {1 \over 2};f'\left( t \right) = 0 \Leftrightarrow t =  - {1 \over 4} \in \left[ { - 1;1} \right]\)

Ta có: \(f\left( { - 1} \right) = {9 \over 2};f\left( { - {1 \over 4}} \right) = {{81} \over {16}};f\left( 1 \right) = {7 \over 2}\)

\(\mathop {\min \,\,f\left( t \right)}\limits_{t \in \left[ { - 1;1} \right]}  = {7 \over 2};\,\,\,\,\,\mathop {\max \,\,f\left( t \right)}\limits_{t \in \left[ { - 1;1} \right]}  = {{81} \over {16}}\)

Vậy \(\mathop {\min \,\,y}\limits_{x \in {\mathbb{R}}}  = {7 \over 2};\,\,\,\,\,\mathop {\max \,\,y}\limits_{x \in {\mathbb{R}}}  = {{81} \over {16}}\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”