Gọi \(M\left( {x;{x^2}} \right)\)
Ta có: \(A{M^2} = {(x + 3)^2} + {x^4} = {x^4} + {x^2} + 6x + 9\)
\(AM\) đạt giá trị nhỏ nhất khi và chỉ khi \(f(x) = {x^4} + {x^2} + 6x + 9\) đạt giá trị nhỏ nhất
Ta có: \(f'(x) = 4{x^3} + 2x + 6 = 2(x + 1)(2{x^2} - 2x + 3)\)
\(f'\left( x \right) = 0 \Leftrightarrow x = - 1;f\left( { - 1} \right) = 5\)
\(f\) đạt giá trị nhỏ nhất tại điểm \(x = -1\), giá trị nhỏ nhất là \(f (-1) = 5\).
\(AM\) đạt giá trị nhỏ nhất khi \(M\) ở vị trí \({M_0} (-1; 1)\) khi đó \(AM_0=\sqrt 5\)