Bài 3.49 trang 134 SBT đại số và giải tích 11

Đề bài

Tìm m để phương trình \({x^4} - \left( {3m + 5} \right){x^2} + {\left( {m + 1} \right)^2} = 0\) có bốn nghiệm lập thành cấp số cộng.

Lời giải

Đặt \({x^2} = y,\) ta có phương trình \({y^2} - \left( {3m + 5} \right)y + {\left( {m + 1} \right)^2} = 0{\rm{    }}\left( 1 \right)\)

Để phương trình có 4 nghiệm thì phương trình (1) phải có 2 nghiệm dương \({y_1},{y_2}{\rm{ }}\left( {{y_1} < {y_2}} \right)\)

\( \Leftrightarrow \Delta  = {\left( {3m + 5} \right)^2} - 4{\left( {m + 1} \right)^2} > 0\) \( \Leftrightarrow {m^2} + 22m + 21 > 0\) \( \Leftrightarrow \left[ \begin{array}{l}m >  - 1\\m <  - 21\end{array} \right.\)

Bốn nghiệm đó là \( - \sqrt {{y_2}} , - \sqrt {{y_1}} ,\sqrt {{y_1}} ,\sqrt {{y_2}} .\)

Điều kiện để 4 nghiệm trên lập thành cấp số cộng là \(\sqrt {{y_2}}  - \sqrt {{y_1}}  = 2\sqrt {{y_1}} \) hay \({y_2} = 9{y_1}\,\,\left( 2 \right)\)

Theo \(\left\{ \begin{array}{l}{y_1} + {y_2} = 3m + 5\,\,\left( 3 \right)\\{y_1}{y_2} = {\left( {m + 1} \right)^2}\,\,\left( 4 \right)\end{array} \right.\)

Từ (2) và (3) ta có: \({y_1} + 9{y_1} = 3m + 5\)\( \Leftrightarrow {y_1} = \dfrac{{3m + 5}}{{10}}\)

Thay \({y_1} = \dfrac{{3m + 5}}{{10}}\) và \({y_2} = \dfrac{{9\left( {3m + 5} \right)}}{{10}}\) vào \(\left( 4 \right)\) ta được:

\(\dfrac{{3m + 5}}{{10}}.\dfrac{{9\left( {3m + 5} \right)}}{{10}} = {\left( {m + 1} \right)^2}\) \( \Leftrightarrow {\left( {3m + 5} \right)^2} = \dfrac{{100{{\left( {m + 1} \right)}^2}}}{9}\) \( \Leftrightarrow \left[ \begin{array}{l}3m + 5 = \dfrac{{10\left( {m + 1} \right)}}{3}\\3m + 5 =  - \dfrac{{10\left( {m + 1} \right)}}{3}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}9m + 15 = 10m + 10\\9m + 15 =  - 10m - 10\end{array} \right.\)  \( \Leftrightarrow \left[ \begin{array}{l}m = 5\\m =  - \dfrac{{25}}{{19}}\end{array} \right.\)\(\left( {TM} \right)\)

Vậy \(m = 5\) và \(m =  - \dfrac{{25}}{{19}}.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”