Bài 43 trang 142 SBT toán 7 tập 1

Đề bài

Cho tam giác \(ABC\) có \(\widehat A = 90^\circ \), trên cạnh \(BC\) lấy điểm \(E\) sao cho \(BE = BA.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D.\)

a) So sánh các độ dài \(DA\) và \(DE.\)

b) Tính số đo góc \(BED.\)

Lời giải

a) Xét \(∆ABD\) và \(∆EBD\), ta có:

\(AB = BE\) (gt)

\(\widehat {AB{\rm{D}}} = \widehat {EBD}\) (vì \(BD\) là tia phân giác góc \(B\))

\(BD\) cạnh chung

\( \Rightarrow   ∆ABD = ∆EBD\) (c.g.c)

\( \Rightarrow  DA = DE\) (hai cạnh tương ứng).

b) Ta có:  \(∆ABD = ∆EBD\) (chứng minh trên)

\( \Rightarrow   \widehat A = \widehat {BE{\rm{D}}}\) (hai góc tương ứng)

Mà \(\widehat A = 90^\circ \) nên \(\widehat {BE{\rm{D}}} = 90^\circ \).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”