Bài 46 trang 143 SBT toán 7 tập 1

Đề bài

Cho tam giác \(ABC\) có ba góc nhọn. Vẽ đoạn thẳng \(AD\) vuông góc với \(AB\) và bằng \(AB\) (\(D\) khác phía \(C\) đối với \( AB\)), vẽ đoạn thẳng \(AE \) vuông góc với \(AC\) và bằng \(AC\) (\(E\) khác phía \(B\) đối với \(AC\))

Chứng minh rằng:

a) \(DC = BE\)

b) \({\rm{D}}C \bot\, BE\)

Lời giải

a)

\(\eqalign{
& \widehat {BA{\rm{E}}} = \widehat {BAC} + 90^\circ \cr 
& \widehat {CA{\rm{D}}} = \widehat {BAC} + 90^\circ \cr 
& \Rightarrow \widehat {BA{\rm{E}}} = \widehat {CA{\rm{D}}} \cr} \)

Xét \(∆ABE\) và \(∆ADC\), ta có:

\(AB = AD\) (gt)

\(AE = AC\) (gt)

\( \widehat {BA{\rm{E}}} = \widehat {CA{\rm{D}}}\)

\(\Rightarrow ∆ABE = ∆ADC\) (c.g.c)

\(\Rightarrow BE=  DC\) (hai cạnh tương ứng)

b) Gọi giao điểm \(DC\) và \(AB\) là \(H\), giao điểm của \(CD\) và \(BE\) là \(K\)

Ta có: \(∆ABE = ∆ADC\) (chứng minh trên)

\(\Rightarrow \widehat {ABE} = \widehat D\)             (1)

Xét tam giác vuông \(AHD\) có \(\widehat {HA{\rm{D}}} = 90^\circ \)

\( \Rightarrow \widehat D + \widehat {AH{\rm{D}}} = 90^\circ \) (tính chất tam giác vuông)       (2)

Mà: \(\widehat {AH{\rm{D}}} = \widehat {KHB}\) (đối đỉnh)            (3)

Từ (1), (2) và (3) suy ra: \(\widehat {ABE} + \widehat {KHB} = 90^\circ \) hay \(\widehat {HBK} + \widehat {KHB} = 90^\circ \) 

Áp dụng định lí tổng các góc của một tam giác vào \(∆KHB\), ta có:

\(\widehat {KHB} + \widehat {HBK} + \widehat {BKH} = 180^\circ \)

\( \Rightarrow \widehat {BKH} = 180^\circ  - \left( {\widehat {HBK} + \widehat {KHB}} \right)\)\(\, = 180^\circ  - 90^\circ  = 90^\circ \)

Vậy \(DC \bot BE\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”