Đề bài
Cho hai biểu thức \(A =\displaystyle{5 \over {2m + 1}}\) và \(B = \displaystyle{4 \over {2m - 1}}\)
Hãy tìm các giá trị của m để hai biểu thức ấy có giá trị thỏa mãn hệ thức
a) \(2A + 3B = 0;\)
b) \(AB = A + B.\)
Đề bài
Tính gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ hai (dùng máy tính bỏ túi để tính toán)
a) \(\left( {x\sqrt {13} + \sqrt 5 } \right)\left( {\sqrt 7 - x\sqrt 3 } \right) = 0\)
b) \(\left( {x\sqrt {2,7} - 1,54} \right)\left( {\sqrt {1,02} + x\sqrt {3,1} } \right) \) \(= 0\)
Đề bài
Giải các phương trình sau:
a) \(\displaystyle{{9x - 0,7} \over 4} - {{5x - 1,5} \over 7} = {{7x - 1,1} \over 3} \) \(\displaystyle - {{5\left( {0,4 - 2x} \right)} \over 6}\)
b) \(\displaystyle{{3x - 1} \over {x - 1}} - {{2x + 5} \over {x + 3}} \) \(\displaystyle= 1 - {4 \over {\left( {x - 1} \right)\left( {x + 3} \right)}}\)
c) \(\displaystyle{3 \over {4\left( {x - 5} \right)}} + {{15} \over {50 - 2{x^2}}} = - {7 \over {6\left( {x + 5} \right)}}\)
d) \(\displaystyle{{8{x^2}} \over {3\left( {1 - 4{x^2}} \right)}} = {{2x} \over {6x - 3}} - {{1 + 8x} \over {4 + 8x}}\)
u
Bước 1: Tìm điều kiện xác của phương trình.
Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: Kết luận.
Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.
Đề bài
Cho phương trình (ẩn \(x\)): \(4{x^2} - 25 + {k^2} + 4kx = 0\)
a) Giải phương trình với \(k = 0.\)
b) Giải phương trình với \(k = -3.\)
c) Tìm các giá trị của \(k\) sao cho phương trình nhận \(x = -2\) làm nghiệm.
Đề bài
Giải các phương trình sau:
a) \(\displaystyle\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\)
b) \(\displaystyle{{ - 7{x^2} + 4} \over {{x^3} + 1}} = {5 \over {{x^2} - x + 1}} - {1 \over {x + 1}}\)
c) \(\displaystyle2{x^2} - x = 3 - 6x\)
d) \(\displaystyle{{x - 2} \over {x + 2}} - {3 \over {x - 2}} = {{2\left( {x - 11} \right)} \over {{x^2} - 4}}\)
Đề bài
Số nhà của Khanh là một số tự nhiên có hai chữ số. Nếu thêm chữ số \(5\) vào bên trái số đó thì được một số kí hiệu là \(A\). Nếu thêm chữ số \(5\) vào bên phải số đó thì được một số kí hiệu là \(B\). Tìm số nhà của Khanh, biết rằng \(A – B = 153.\)
Đề bài
Một đội thợ mỏ lập kế hoạch khai thác than, theo đó mỗi ngày phải khai thác được \(50\) tấn than. Khi thực hiện, mỗi ngày đội khai thác được \(57\) tấn than. Do đó, đội đã hoàn thành kế hoạch trước một ngày và vượt mức \(13\) tấn than. Hỏi theo kế hoạch, đội phải khai thác bao nhiêu tấn than ?
Đề bài
Hai xe ô tô cùng khởi hành từ Lạng Sơn về Hà Nội, quãng đường dài \(163 km\). Trong \(43km\) đầu, hai xe có cùng vận tốc. Nhưng sau đó chiếc xe thứ nhất tăng vận tốc lên gấp \(1,2\) lần vận tốc ban đầu, trong khi chiếc xe thứ hai vẫn duy trì vận tốc cũ. Do đó xe thứ nhất đã đến Hà Nội sớm hơn xe thứ hai \(40\) phút. Tính vận tốc ban đầu của hai xe.
Đề bài
Một đoàn tàu hỏa từ Hà Nội đi Thành phố Hồ Chí Minh. \(1\) giờ \(48\) phút sau, một đoàn tàu hỏa khác khởi hành từ Nam Định cũng đi Thành phố Hồ Chí Minh với vận tốc nhỏ hơn vận tốc của đoàn tàu thứ nhất là \(5 km/h\). Hai đoàn tàu gặp nhau ( tại một ga nào đó) sau \(4\) giờ \(48\) phút kể từ khi đoàn tàu thứ nhất khởi hành. Tính vận tốc mỗi đoàn tàu, biết rằng ga Nam Định nằm trên đường từ Hà Nội đi Thành phố Hồ Chí Minh và cách ga Hà Nội \(87 km\).
Đề bài
Lúc \(7\) giờ sáng, một chiếc ca nô xuôi dòng từ bến A đến bến B, cách nhau \(36km\), rồi ngay lập tức quay trở về và đến bến A lúc \(11\) giờ \(30\) phút. Tính vận tốc của ca nô khi xuôi dòng, biết rằng vận tốc nước chảy là \(6 km/h.\)
Đề bài
Giải các phương trình sau :
a) \(\displaystyle{{13} \over {\left( {2x + 7} \right)\left( {x - 3} \right)}} + {1 \over {2x + 7}} = {6 \over {{x^2} - 9}}\)
b) \(\displaystyle{\left( {1 - {{2x - 1} \over {x + 1}}} \right)^3} + 6{\left( {1 - {{2x - 1} \over {x + 1}}} \right)^2} \)\(\displaystyle= {{12\left( {2x - 1} \right)} \over {x + 1}} - 20\)
Đề bài
a) Cho ba số \(a, \;b\) và \(c\) đôi một phân biệt. Giải phương trình
\(\displaystyle{x \over {\left( {a - b} \right)\left( {a - c} \right)}} + {x \over {\left( {b - a} \right)\left( {b - c} \right)}} \)\(\displaystyle+ {x \over {\left( {c - a} \right)\left( {c - b} \right)}} = 2\)
b) Cho số \(a\) và ba số \(b,\; c,\; d\) khác \(a\) và thỏa mãn điều kiện \(c + d = 2b\). Giải phương trình
\(\displaystyle{x \over {\left( {a - b} \right)\left( {a - c} \right)}} - {{2x} \over {\left( {a - b} \right)\left( {a - d} \right)}} \)\(\displaystyle + {{3x} \over {\left( {a - c} \right)\left( {a - d} \right)}} \)\(\displaystyle = {{4a} \over {\left( {a - c} \right)\left( {a - d} \right)}}\)
Đề bài
Cần phải thêm vào tử và mẫu của phân số \(\displaystyle{{13} \over {18}}\) với cùng một số tự nhiên nào để được phân số \(\displaystyle{4 \over 5}\)?
Đề bài
Cách đây \(10\) năm, tuổi của người thứ nhất gấp \(3\) lần tuổi của người thứ hai. Sau đây \(2\) năm, tuổi của người thứ hai bằng nửa tuổi của người thứ nhất. Hỏi hiện nay, tuổi của mỗi người là bao nhiêu ?