Bài 52 trang 13 SBT toán 9 tập 1

Đề bài

Điền vào các chỗ trống (...) trong phép chứng minh sau: 

Số \(\sqrt 2 \) là số vô tỉ.

Giả sử \(\sqrt 2 \) không phải là số vô tỉ thì phải tồn tại các số nguyên m và n sao cho \(\sqrt 2  = \dfrac{m}{n}\) với \(n > 0\) còn hai số \(m\) và \(n\) không có ước chung nào khác 1 và \(-1\).

Khi đó, ta có: ... hay \(2{n^2} = {m^2}\) (1).

Kết quả (1) chứng tỏ \(m\) là số chẵn, nghĩa là \(m = 2p\) với \(p\) là số nguyên.

Thay \(m = 2p\) vào (1) ta được: ... hay \({n^2} = 2{p^2}\) (2)

Kết quả (2) chứng tỏ \(n\) phải là số chẵn.

Hai số \(m\) và \(n\) đều là số chẵn, trái với giả thiết \(m\) và \(n\) không có ước chung nào khác \(1\) và \(-1\).

Vậy \(\sqrt 2 \) là số vô tỉ.  

Lời giải

Số \(\sqrt 2 \) là số vô tỉ.

Giả sử \(\sqrt 2 \) không phải là số vô tỉ thì phải tồn tại các số nguyên m và n sao cho \(\sqrt 2  = \dfrac{m}{n}\) với \(n > 0\) còn hai số \(m\) và \(n\) không có ước chung nào khác 1 và \(-1\) (hai số \(m\) và \(n\) nguyên tố cùng nhau) 

Khi đó, ta có: \({(\sqrt 2 )^2} = \dfrac{{{m^2}}}{{{n^2}}}\) hay \(2{n^2} = {m^2}\) (1). 

Kết quả (1) chứng tỏ \(m\) là số chẵn, nghĩa là \(m = 2p\) với \(p\) là số nguyên.

Thay \(m = 2p\) vào (1) ta được: \(2{n^2} = {\left( {2p} \right)^2}\) hay \({n^2} = 2{p^2}\) (2)

Kết quả (2) chứng tỏ \(n\) phải là số chẵn.

Hai số \(m\) và \(n\) đều là số chẵn, trái với giả thiết \(m\) và \(n\) không có ước chung nào khác \(1\) và \(-1\).

Vậy \(\sqrt 2 \) là số vô tỉ.