Bài 9 trang 100 SBT toán 9 tập 2

Đề bài

Cho \(C\) là một điểm nằm trên cung lớn \(AB\) của đường tròn \((O).\) Điểm \(C\) của cung lớn \(\overparen{AB}\) thành hai cung \(\overparen{AC}\) và \(\overparen{CB}.\) Chứng minh rằng cung lớn \(\overparen{AB}\) có \(sđ \overparen{AB} = sđ \overparen{AC} = sđ \overparen{CB}.\)

Hướng dẫn: Xét \(3\) trường hợp:

\(a)\) Tia \(OC\) nằm trong góc đối đỉnh của góc ở tâm \(\widehat{AOB}.\)

\(b)\) Tia \(OC\) trùng với tia đối của một cạnh của góc ở tâm \(\widehat{AOB}.\)

\(c)\) Tia \(OC\) nằm trong một góc kề bù với góc ở tâm \(\widehat{AOB}.\)

Lời giải

\(a)\) Trường hợp tia \(OC\) nằm trong góc đối đỉnh với \(\widehat {AOB}\)

Kẻ đường kính \(CD\)

Suy ra: \(OD\) nằm giữa \(OA\) và \(OB\) nên điểm \(D\) nằm trên cung nhỏ cung \(\overparen{AB}\)

\(\Rightarrow sđ \overparen{AD}(nhỏ) + sđ \overparen{BD}(nhỏ) \)\(= sđ \overparen{AB}(nhỏ)\) \((1)\)

Vì \(OA\) nằm giữa \(OC\) và \(OD\) nên điểm \(A\) nằm trên cung nửa đường tròn \(CD.\)

\( \Rightarrow\)\( sđ \overparen{AD}(nhỏ) + sđ \overparen{AC}(nhỏ)\)\( =180^o\) \((2)\)

Vì \(OB\) nằm giữa \(OC\) và \(OD\) nên điểm \(B\) nằm trên cung nửa đường tròn \(CD.\)

\( \Rightarrow sđ \overparen{BD}(nhỏ) + sđ \overparen{BC}(nhỏ) \)\(=180^o\) \((3)\)

Cộng từng vế \((2)\) và \((3):\)

\(sđ \overparen{AD}(nhỏ) + sđ \overparen{AC}(nhỏ) \)\(+ sđ \overparen{BD}(nhỏ) + sđ \overparen{BC}(nhỏ) \)\(=360^o\) \(    (4)\)

Từ \((1)\) và \((4)\) suy ra: \(sđ \overparen{AC}(nhỏ) + sđ \overparen{BC}(nhỏ) \)\(+ sđ \overparen{AB}(nhỏ) =360^o\)

\( \Rightarrow sđ \overparen{AC}(nhỏ) + sđ \overparen{BC}(nhỏ)\)\( = 360^o- sđ \overparen{AB}(nhỏ)\)

Mà \(360^o - sđ \overparen{AB}(nhỏ) = sđ \overparen{AD}(lớn)\)

Vậy với cung lớn \(\overparen{AB}\) ta có: \(sđ \overparen{AB}= sđ \overparen{AC} + sđ \overparen{BC}\)

b)

 

Trường hợp tia \(OC\) trùng với tia đối của một cạnh của góc ở tâm \(\widehat{AOB}\) ta có:

\(\widehat {AOB} + \widehat {BOC} = {180^o}\); \(\widehat {AOC} = {180^o}\)

\( \Rightarrow \widehat {AOB} + \widehat {BOC} + \widehat {AOC} = {360^o}\)

\( \Rightarrow \widehat {AOC} + \widehat {BOC} = {360^o} - \widehat {AOB}\)

Suy ra: \(sđ \overparen{AB} + sđ\overparen{BC} (nhỏ) \)\(=360^o - sđ \overparen{AB} (nhỏ)\)

Vậy với cung lớn \(\overparen{AB}\) ta có: \(sđ \overparen{AB} = sđ \overparen{AC} (nhỏ) + sđ \overparen{BC} \)

c)

Trong hợp tia \(OC\) nằm trong góc kề bù với góc ở tâm \(\widehat{AOB},\) kẻ đường kính \(AE.\)

Theo trường hợp \(b)\) ta có:

\(sđ \overparen{AB} (lớn) \)\(= sđ \overparen{AE} (nhỏ) + sđ \overparen{BE} (nhỏ)\)

Ta xét trường hợp \(C\) nằm trên cung nhỏ \(\overparen{EB}:\)

\(sđ \overparen{EB} (nhỏ) \)\(= sđ\overparen{EC} (nhỏ) + sđ \overparen{CB} (nhỏ)\)

\( \Rightarrow \) \(sđ \overparen{AB} (lớn) = sđ\overparen{AE} \)\(+ sđ \overparen{EC} (nhỏ) + sđ\overparen{CB} (nhỏ)\)

Theo kết quả trường hợp \(b)\) ta có:

\(sđ \overparen{AE} + sđ \overparen{EC} (nhỏ)= sđ \overparen{AC} (lớn)\)

Vậy với cung \(\overparen{AB}\) lớn ta có: \(sđ \overparen{AB} = sđ\overparen{AC} + sđ \overparen{CB}\)

Trong trường hợp \(OC\) nằm trên góc đối với góc ở tâm \(\widehat {BOE}\) chứng minh tương tự.

Trong trường hợp \(OC\) nằm trên góc đối đỉnh với góc ở tâm \(\widehat {AOB}\) chứng minh ở trường hợp \(a).\)