Đề kiểm tra 15 phút - Đề số 1 - Chương II - Giải Tích 12

Câu 1. Trong các số sau số nào lớn nhất ?

A. \({\log _2}5\)                    B. \({\log _4}15\)     

C. \({\log _8}3\)                    D. \({\log _{{1 \over 2}}}{1 \over 6}\).

Câu 2. Đạo hàm của hàm số \(y = {(2x + 1)^e}\) là:

A. \(y' = 2{(2x + 1)^e}\)       

B. \(y' = 2e{(2x + 1)^{e - 1}}\)      

C. \(y' = e{(2x + 1)^{e - 1}}\)    

D. \(y' = 2{(2x + 1)^{e - 1}}\).

Câu 3. Cho a > 1. Tìm mệnh đề sai trong các mệnh đề sau :

A. \({\log _a}x > 0\) khi x > 1.

B. \({\log _a}x < 0\) khi 0 < x < 1.

C. Đồ thị hàm số \(y = {\log _a}x\) có tiệm cận ngang là trục hoành.

D. Nếu 0 < x1 < x2 thì \({\log _a}{x_1} < {\log _a}{x_2}\).

Câu 4. Điều kiện xác định của phương trình \({\log _x}(2{x^2} - 7x + 5) = 2\) là:

A. \(x \in (0; + \infty )\)                             

B. \(x \in (0;1)\)                    

C. \(x \in \left( {{5 \over 2}; + \infty } \right)\)                            

D. \(x \in (0;1) \cup \left( {{5 \over 2}; + \infty } \right)\).

Câu 5. Tìm mệnh đề đúng trong các mệnh đề sau:

A. Hàm số \(y = {\log _a}x\) với a > 1 nghịch biến trên khoảng \((0; + \infty )\).

B. Hàm số \(y = {a^x}\)với 0 < a < 1 đồng biến trên khoảng \((0; + \infty )\).

C. Hàm số \(y = \log x\) nghịch biến trên khoảng \((0; + \infty )\).

D. Hàm số \(y = {a^x}\)với 0 < a < 1 nghịch biến trên khoảng \(( - \infty ; + \infty )\).

Câu 6. Phương trình \({3^{3x + 1}} = 27\) có nghiệm là:

A. 4                             B. 1          

C. \({2 \over 3}\)                            D. \({4 \over 3}\).

Câu 7. Tập nghiệm cũa bất phương trình \({3^{2x - 5}} < 9\)  là:

A. \(\left( { - \infty ;{7 \over 2}} \right)\)                

B. \(\left( {{7 \over 2}; + \infty } \right)\)                   

C. \(\left( { - \infty ;{5 \over 2}} \right)\)               

D. \(\left( {{5 \over 2}; + \infty } \right)\).

Câu 8. Biểu thức \(\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } \,\,(x > 0)\) được viết dưới dạng lũy thừa số mũ hữu tỷ là;

A. \({x^{{{15} \over {16}}}}\)                        

B. \({x^{{{15} \over {18}}}}\)                             

C. \({x^{{3 \over {16}}}}\)                       

D. \({x^{{7 \over {18}}}}\).

Câu 9. Cho phương trình \(\ln x + \ln (x + 1) = 0\). Chọn khẳng định đúng :

A. Phương trình vô nghiệm.

B. Phương trình có hai nghiệm .

C. Phương trình có nghiệm \( \in (1;2)\).

D. Phương trình có nghiệm \( \in (0;1)\).

Câu 10. Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là:

A. 0                            B. 1               

C. 2                            D. 3

Lời giải

Câu

1

2

3

4

5

Đáp án

D

B

C

D

D

Câu

6

7

8

9

10

Đáp án

C

A

A

D

C