Bài 1. \({{{a^2}} \over {a - b}} + {{{b^2}} \over {b - a}} = {{{a^2}} \over {a - b}} + {{ - {b^2}} \over {a - b}} = {{{a^2} - {b^2}} \over {a - b}}\)\(\; = a + b\)
Bài 2.
\(4 + {{3a} \over {5 - 2b}} + {{5\left( {a - 10} \right)} \over {2b - 5}} \)
\(= 4 + {{3a} \over {5 - 2b}} + {{ - 5\left( {a - 10} \right)} \over {5 - 2b}}\)
\( = {{4\left( {5 - 2b} \right) + 3a - 5\left( {a - 10} \right)} \over {5 - 2b}} \)
\(= {{20 - 8b + 3a - 5a + 50} \over {5 - 2b}}\)
\( = {{70 - 8b - 2a} \over {5 - 2b}}\)
Bài 3 \(MTC = {x^3} - 1 = \left( {{x^2} + x + 1} \right)\left( {x - 1} \right)\)
\({{3{x^2} - x + 3} \over {{x^3} - 1}} + {{1 - x} \over {{x^2} + x + 1}} + {2 \over {1 - x}} \)
\(= {{3{x^2} - x + 3} \over {{x^3} - 1}} + {{1 - x} \over {{x^2} + x + 1}} + {{ - 2} \over {x - 1}}\)
\( = {{3{x^2} - x + 3 + \left( {1 - x} \right)\left( {x - 1} \right) - 2\left( {{x^2} + x + 1} \right)} \over {{x^3} - 1}}\)
\( = {{3{x^2} - x + 3 - {x^2} + 2x - 1 - 2{x^2} - 2x - 1} \over {{x^3} - 1}} = {{ - x + 1} \over {{x^3} - 1}}\)
\( = {{ - \left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {{ - 1} \over {{x^2} + x + 1}}\)