Đề kiểm tra 15 phút - Đề số 4 - Bài 6 - Chương 2 - Hình học 8

Cho hình chữ nhật ABCD có AB = 6cm, AC = 10 cm. Gọi O là giao điểm hai đường chéo AC và BD và M, N, P, Q lần lượt là trung điểm của OA, OB, OC, OD.

a) Tính \({S_{MNPQ}}.\)

b) Chứng minh rằng: \({S_{AMNB}} = {S_{CPQD}}.\)

Lời giải

a) Ta có MN và PQ lần lượt là các đường trung bình của các tam giác AOB và COD mà \(AB// CD\) và AB = CD nên \(MN// PQ\) và MN = PQ.

Tương tự \(NP//BC\) mà \(AB \bot BC\) nên \(MN \bot NP.\) Do đó MNPQ là hình chữ nhật.

Trong \(\Delta ABC\) ta có:

\(BC = \sqrt {A{C^2} - A{B^2}}  = \sqrt {{{10}^2} - {6^2}}  \)\(\,= 8\left( {cm} \right)\) (định lý py – ta – go)

Nên \(MN = {1 \over 2}AB = 3cm,\) \(NP = {1 \over 2}BC = 4cm\)

Vậy \({S_{MNPQ}} = MN.NP = 3.4 = 12\left( {c{m^2}} \right)\)

b) Dễ thấy \(\Delta AOB = \Delta COD\left( {c.c.c} \right),\) tương tự \(\Delta MON = \Delta POQ.\)

Do đó: \({S_{AOB}} = {S_{COD}}\) và \({S_{MON}} = {S_{POQ}}\)

\( \Rightarrow {S_{AOB}} - {S_{MON}} = {S_{COD}} - {S_{POQ}}\) hay \({S_{AMNB}} = {S_{CPQD}}.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”