\(A = \sqrt x + \sqrt {x + 1} \) xác định khi và chỉ khi:
\(\left\{ \matrix{
x \ge 0 \hfill \cr
x + 1 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 0 \hfill \cr
x \ge -1 \hfill \cr} \right. \Leftrightarrow \,x \ge 0\)
\(B = \sqrt {x + 4} + \sqrt {x - 1} \) xác định khi và chỉ khi:
\(\left\{ \matrix{
x + 4 \ge 0 \hfill \cr
x - 1 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 4 \hfill \cr
x \ge 1 \hfill \cr} \right. \Leftrightarrow x \ge 1\)
a) Với \(x \ge 0\) ta có: \(x + 1 \ge 1 \Rightarrow \sqrt {x + 1} \ge 1\)
Suy ra: \(A = \sqrt x + \sqrt {x + 1} \ge 1\)
Với \(x \ge 1\) ta có:
\(x + 4 \ge 1 + 4 \Leftrightarrow x + 4 \ge 5\)\( \Leftrightarrow \sqrt {x + 4} \ge \sqrt 5 \)
Suy ra: \(B = \sqrt {x + 4} + \sqrt {x - 1} \ge \sqrt 5 \)
b)+) \(\sqrt x + \sqrt {x + 1} = 1\)
Điều kiện : \(x \ge 0\)
Ta có: \(\sqrt x + \sqrt {x + 1} \ge 1\)
Dấu bằng xảy ra khi và chỉ khi: \(\sqrt x = 0\) và \(\sqrt {x + 1} = 1\)
Suy ra: \(x = 0\)
+) \(\sqrt {x + 4} + \sqrt {x - 1} = 2(*)\)
Ta có: \(\sqrt {x + 4} + \sqrt {x - 1} \ge \sqrt 5 \)
Mà: \(\sqrt 5 > \sqrt 4 \Leftrightarrow \sqrt 5 > 2\)
Hay \(VP(*)>VT(*)\)
Vậy không có giá trị nào của \(x\) để \(\sqrt {x + 4} + \sqrt {x - 1} = 2\) .