Bài 1.75 trang 42 SBT hình học 11

Đề bài

Trong mặt phẳng \(Oxy\) cho đường thẳng \(d\) có phương trình \(2x + y - 3 = 0\). Phép vị tự tâm \(O\) tỉ số \(k = 2\) biến \(d\) thành đường thẳng có phương trình

A. \(2x + y + 3 = 0\)

B. \(2x + y - 6 = 0\)

C. \(4x - 2y - 3 = 0\)

D. \(4x + 2y - 5 = 0\)

Lời giải

Gọi phương trình \(d':2x + y + c = 0\).

Lấy \(A\left( {0;3} \right) \in d\), gọi \(A' = {V_{\left( {O;2} \right)}}\left( A \right)\) thì \(\overrightarrow {OA'}  = 2\overrightarrow {OA} \) \( \Leftrightarrow \left\{ \begin{array}{l}x' - 0 = 2\left( {0 - 0} \right)\\y' - 0 = 2\left( {3 - 0} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = 0\\y' = 6\end{array} \right.\).

Suy ra \(A'\left( {0;6} \right)\).

Mà \(A' \in d'\) nên \(2.0 + 6 + c = 0 \Leftrightarrow c =  - 6\).

Vậy \(d':2x + y - 6 = 0\).

Chọn B.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”