Bài 1.76 trang 42 SBT hình học 11

Đề bài

Trong mặt phẳng \(Oxy\) cho đường thẳng \(d\) có phương trình \(x + y - 2 = 0\) . Phép vị tự tâm \(O\) tỉ số \(k =  - 2\) biến \(d\) thành đường thẳng có phương trình

A. \(2x + 2y = 0\)

B. \(2x + 2y - 4 = 0\)

C. . \(x + y + 4 = 0\)

D. \(x + y - 4 = 0\)

Lời giải

Gọi phương trình \(d':x + y + c = 0\).

Lấy \(A\left( {0;2} \right) \in d\), gọi \(A' = {V_{\left( {O; - 2} \right)}}\left( A \right)\) thì \(\overrightarrow {OA'}  =  - 2\overrightarrow {OA} \) \( \Leftrightarrow \left\{ \begin{array}{l}x' - 0 =  - 2\left( {0 - 0} \right)\\y' - 0 =  - 2\left( {2 - 0} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = 0\\y' =  - 4\end{array} \right.\).

Suy ra \(A'\left( {0; - 4} \right)\).

Mà \(A' \in d'\) nên \(0 + \left( { - 4} \right) + c = 0 \Leftrightarrow c = 4\).

Vậy \(d':x + y + 4 = 0\).

Chọn C.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”