Gọi \(M' = {V_{\left( {O;\dfrac{1}{2}} \right)}}\left( M \right)\) thì \(\overrightarrow {OM'} = \dfrac{1}{2}\overrightarrow {OM} \) \( \Leftrightarrow \left\{ \begin{array}{l}x' - 0 = \dfrac{1}{2}\left( {2 - 0} \right)\\y' - 0 = \dfrac{1}{2}\left( {4 - 0} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = 1\\y' = 2\end{array} \right.\).
Suy ra \(M'\left( {1;2} \right)\).
Gọi \(M'' = {D_{Oy}}\left( {M'} \right)\) thì \(\left\{ \begin{array}{l}x'' = - x' = - 1\\y'' = y' = 2\end{array} \right.\) hay \(M''\left( { - 1;2} \right)\).
Chọn C.