Phương trình \(a{x^2} + bx + c = 0\)
\(a\) và \(c\) trái dấu \( \Leftrightarrow ac < 0\)
\( \Leftrightarrow - ac > 0 \Leftrightarrow - 4ac > 0\)
\(\Delta = {b^2} - 4ac\)
Ta có \({b^2} \ge 0\); \( - 4ac > 0\) \( \Leftrightarrow {b^2} - 4ac > 0\)
\( \Rightarrow \Delta = {b^2} - 4ac > 0\), phương trình có hai nghiệm phân biệt.
Áp dụng:
a) \(3{x^2} - x - 8 = 0\)
Có \(a = 3; c = -8 ⇒ ac < 0\). Phương trình có hai nghiệm phân biệt.
b) \(2004{x^2} + 2x - 1185\sqrt 5 = 0\)
Có \(a = 2004; c = - 1185\sqrt 5 \) \(⇒ ac < 0\). Phương trình có hai nghiệm phân biệt.
c) \(3\sqrt 2 {x^2} + \left( {\sqrt 3 - \sqrt 2 } \right)x + \sqrt 2 - \sqrt 3 \)\(\,= 0\)
Có \(a = 3\sqrt 2 > 0;c = \sqrt 2 - \sqrt 3 < 0\) (vì \(\sqrt 2 < \sqrt 3 \))
\(⇒ ac < 0\), phương trình có hai nghiệm phân biệt.
d) \(2010{x^2} + 5x - {m^2} = 0\)
- Nếu \(m = 0\) phương trình có dạng \(2010{x^2} + 5x = 0\) có \(2\) nghiệm là \(x=0\) và \(x = \dfrac{{ - 1}}{{402}}\).
- Nếu \(m \ne 0 \Rightarrow {m^2} > 0 \Rightarrow - {m^2} < 0\)
\(a = 2010 > 0;c = - {m^2} < 0\) \( \Rightarrow ac < 0.\)
Phương trình có hai nghiệm phân biệt.
Vậy với mọi \(m ∈\mathbb R\) thì phương trình \(2010{x^2} + 5x - {m^2} = 0\) luôn có hai nghiệm phân biệt.