a) \(16{x^2} - 8x + 1 = 0 \)
\( \Delta ' = {\left( { - 4} \right)^2} - 16.1 = 16 - 16 = 0 \)
Phương trình có nghiệm kép: \({x_1} = {x_2} \displaystyle = {4 \over {16}} = \displaystyle{1 \over 4} = 0,25\)
b) \(6{x^2} - 10x - 1 = 0\)
\(\Delta ' = {\left( { - 5} \right)^2} - 6.\left( { - 1} \right) = 25 + 6 \)\(\,= 31 > 0\)
\(\sqrt {\Delta '} = \sqrt {31} \)
Phương trình có hai nghiệm phân biệt:
\( \displaystyle {x_1} = {{5 + \sqrt {31} } \over 6} \approx 1,76 \)
\( \displaystyle {x_2} = {{5 - \sqrt {31} } \over 6} \approx - 0,09 \)
c) \(5{x^2} + 24x + 9 = 0 \)
\( \Delta ' = {\left( {12} \right)^2} - 5.9 = 144 - 45 \)\(\,= 99 > 0 \)
\( \sqrt {\Delta '} = \sqrt {99} = 3\sqrt {11} \)
Phương trình có hai nghiệm phân biệt:
\(\displaystyle {x_1} = {{ - 12 + 3\sqrt {11} } \over 5} \approx - 0,41 \)
\( \displaystyle {x_2} = {{ - 12 - 3\sqrt {11} } \over 5} \approx - 4,39 \)
d) \(16{x^2} - 10x + 1 = 0 \)
\( \Delta ' = {\left( { - 5} \right)^2} - 16.1 = 25 - 16 \)\(\,= 9 > 0 \)
\(\sqrt {\Delta '} = \sqrt 9 = 3 \)
Phương trình có hai nghiệm phân biệt:
\( \displaystyle {x_1} = {{5 + 3} \over {16}} = {8 \over {16}} = 0,5 \)
\( \displaystyle {x_2} = {{5 - 3} \over {16}} = {2 \over {16}} = {1 \over 8} = 0,125 \)