Bài 45 trang 20 SGK Toán 8 tập 1

Tìm \(x\), biết:

a) \(2 - 25x^2= 0\);

b) \(x^2- x + \dfrac{1}{4} = 0\) 

Lời giải

a) \(2 - 25x^2= 0 \)

    \(  (\sqrt2)^2 - (5x)^2 = 0\)

    \(  (\sqrt 2 - 5x)( \sqrt 2 + 5x) = 0\)

\( \Rightarrow \left[ \begin{array}{l}\sqrt 2 - 5{\rm{x}} = 0\\\sqrt 2 + 5{\rm{x}} = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = \dfrac{{\sqrt 2 }}{5}\\x = \dfrac{{ - \sqrt 2 }}{5}\end{array} \right.\)

Vậy \(x = \dfrac{{\sqrt 2 }}{5}\) hoặc \(x = \dfrac{{ - \sqrt 2 }}{5}\)

b) \(x^2- x + \dfrac{1}{4} = 0\)

   \( x^2- 2 . x . \dfrac{1}{2} + {\left( {\dfrac{1}{2}} \right)^2}= 0\)

   \({\left( {x - \dfrac{1}{2}} \right)^2} = 0 \)

   \( \Rightarrow  x - \dfrac{1}{2}= 0  \Rightarrow  x = \dfrac{1}{2}\)

Vậy \(x = \dfrac{1}{2}.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”