Bài 5 trang 27 (Ôn tập chương I - Vectơ) SGK Hình học 10

Cho tam giác đều \(ABC\) nội tiếp đường tròn tâm \(O\). Hãy xác định các điểm \(M, N, P\) sao cho:

a) \(\overrightarrow {OM}  = \overrightarrow {OA}  + \overrightarrow {OB} \)

b) \(\overrightarrow {OP}  = \overrightarrow {OC}  + \overrightarrow {OA} \)

c) \(\overrightarrow {ON}  = \overrightarrow {OB}  + \overrightarrow {OC} \)

Lời giải

 

a) Nối \(OC\) và kéo dài cắt đường tròn tại điểm \(M\)

Dễ thấy, tam giác \(OAM\) là tam giác đều và \(OAMB\) là hình bình hành, cho ta:

  \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OM} \)

b) Nối \(OB\) và kéo dài cắt đường tròn tại điểm \(P\)

Tương tự như trên ta có:

\(\overrightarrow {OP}  = \overrightarrow {OC}  + \overrightarrow {OA} \)

c) Nối \(OA\) và kéo dài cắt đường tròn tại điểm \(N\)

Tương tự như trên ta có:

\(\overrightarrow {ON}  = \overrightarrow {OB}  + \overrightarrow {OC} \)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”