Bài 68 trang 102 SGK Toán 8 tập 1

Cho điểm \(A\) nằm ngoài đường thẳng \(d\) và có khoảng cách đến \(d\) bằng \(2cm\). lấy điểm \(B\) bất kì thuộc đường thẳng \(d\). Gọi \(C\) là điểm đối xứng với điểm \(A\) qua điểm \(B\). Khi điểm \(B\) di chuyển trên đường thẳng \(d\) thì điểm \(C\) di chuyển trên đường nào ?

Lời giải

Kẻ \(AH\) và \(CK\) vuông góc với \(d\).

Vì \(C\) là điểm đối xứng với \(A\) qua \(B\) (giả thiết)

\( \Rightarrow \) \(AB = CB\) (tính chất hai điểm đối xứng qua \(1\) điểm)

Xét hai tam giác vuông \(AHB\) và \(CKB\) có:

\(AB = CB\) (chứng minh trên)

\(\widehat{ABH} = \widehat{CBK}\) ( đối đỉnh)

\( \Rightarrow \)   \(∆AHB =  ∆CKB\) (cạnh huyền - góc nhọn)

\( \Rightarrow \)  \(CK = AH = 2cm\) (\(2\) cạnh tương ứng)

Điểm \(C\) cách đường thẳng \(d\) cố định một khoảng cách không đổi \(2cm\) nên \(C\) di chuyển trên đường thẳng \(m\) song song với \(d\) và cách \(d\) một khoảng bằng \(2cm\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”