Bài 72 trang 17 SBT toán 9 tập 1

Đề bài

Xác định giá trị biểu thức sau theo cách thích hợp: 

\( \displaystyle{1 \over {\sqrt 2  + \sqrt 1 }} + {1 \over {\sqrt 3  + \sqrt 2 }} + {1 \over {\sqrt 4  + \sqrt 3 }}\) 

Lời giải

Ta có: 

\( \displaystyle{1 \over {\sqrt 2  + \sqrt 1 }} + {1 \over {\sqrt 3  + \sqrt 2 }} + {1 \over {\sqrt 4  + \sqrt 3 }}\)

\( \displaystyle = {{\sqrt 2  - \sqrt 1 } \over {(\sqrt 2  + \sqrt 1 )(\sqrt 2  - \sqrt 1 )}} \)\(\displaystyle + {{\sqrt 3  - \sqrt 2 } \over {(\sqrt 3  + \sqrt {2)} (\sqrt 3  - \sqrt 2 )}} \)\(\displaystyle + {{\sqrt 4  - \sqrt 3 } \over {(\sqrt 4  + \sqrt 3 )(\sqrt 4  - \sqrt 3 )}}\)

\( \displaystyle = {{\sqrt 2  - \sqrt 1 } \over {2 - 1}} \)\(\displaystyle + {{\sqrt 3  - \sqrt 2 } \over {3 - 2}} \)\(\displaystyle + {{\sqrt 4  - \sqrt 3 } \over {4 - 3}}\)

\( \displaystyle = \sqrt 2  - \sqrt 1  + \sqrt 3  - \sqrt 2 \)\( + \sqrt 4  - \sqrt 3 \)

\( \displaystyle =  - \sqrt 1  + \sqrt 4 \)\( =  - 1 + 2 = 1\) 


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”