Bài 1: Ta có : \({x^2} + 2x - m = 0\)
\(\Leftrightarrow {x^2} + 2x + 1 - 1 - m = 0\)
\( \Leftrightarrow {\left( {x + 1} \right)^2} = m + 1\)
Phương trình vô nghiệm \( \Leftrightarrow m + 1 < 0 \Leftrightarrow m < - 1.\)
Nhận xét : Nếu \(m + 1 ≥ − 1\), phương trình có nghiệm.
Bài 2: \({x^2} - 5x - 6 = 0\)
\(\Leftrightarrow {x^2} - 2.{5 \over 2}x + {{25} \over 4} - {{25} \over 4} - 6 = 0\)
\( \Leftrightarrow {\left( {x - {5 \over 2}} \right)^2} = {{49} \over 4} \Leftrightarrow \left| {x - {5 \over 2}} \right| = {7 \over 2}\)
\( \Leftrightarrow \left[ \matrix{ x - {5 \over 2} = {7 \over 2} \hfill \cr x - {5 \over 2} = - {7 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ x = 6 \hfill \cr x = - 1. \hfill \cr} \right.\)
Bài 3: Ta có : \({x^2} - 4 = 0 \Leftrightarrow x = \pm 2\)
Nếu \(x = \pm 2\) là nghiệm của phương trình \({x^2} + px + q = 0\left( * \right)\), ta có hệ :
\(\left\{ \matrix{ 4 + 2p + q = 0 \hfill \cr 4 - 2p + q = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ p = 0 \hfill \cr q = - 4 \hfill \cr} \right.\)
Vậy phương trình (*) trở thành \({x^2} - 4 = 0\)( đó chính là phương trình thứ nhất và hiển nhiên có hai nghiệm \(x = \pm 2).\)
Vậy \(p=0; q=-4\)