a) Ta có:
\(\begin{array}{l}\dfrac{{AD}}{{AB}} = \dfrac{3}{{3 + 6}} = \dfrac{3}{9} = \dfrac{1}{3}\\\dfrac{{AE}}{{AC}} = \dfrac{5}{{5 + 10}} = \dfrac{5}{{15}} = \dfrac{1}{3}\\ \Rightarrow \dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}}\end{array}\)
Theo định lí Ta- lét đảo thì \(DE//BC\)
\(\begin{array}{l}\dfrac{{CE}}{{CA}} = \dfrac{{10}}{{10 + 5}} = \dfrac{{10}}{{15}} = \dfrac{2}{3}\\\dfrac{{CF}}{{CB}} = \dfrac{{14}}{{14 + 7}} = \dfrac{{14}}{{21}} = \dfrac{2}{3}\\ \Rightarrow \dfrac{{CE}}{{CA}} = \dfrac{{CF}}{{CB}}\end{array}\)
Theo định lí Ta-lét đảo thì \(EF//AB\)
Trong hình vẽ đã cho có 2 cặp đường thẳng song song với nhau.
b) Tứ giác \(BDEF\) có \(BD//EF;DE//BF\) nên \(BDEF\) là hình bình hành.
c) Vì \(BDEF\) là hình bình hành nên \(DE = BF = 7\) (Tính chất hình bình hành).
Ta có: \(\dfrac{{DE}}{{BC}} = \dfrac{7}{{7 + 14}} = \dfrac{1}{3}\)
Do đó: \(\dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}} = \dfrac{{DE}}{{BC}} = \dfrac{1}{3}\)
Nhận xét: Hai tam giác \(ADE\) và \(ABC\) có các cặp cạnh tương ứng tỉ lệ.