Bài 14 trang 7 SBT toán 8 tập 1

Đề bài

Rút gọn biểu thức:

\(a)\) \({\left( {x + y} \right)^2} + {\left( {x - y} \right)^2}\)

\(b)\) \(2\left( {x - y} \right)\left( {x + y} \right) + {\left( {x + y} \right)^2} \)\(+ {\left( {x - y} \right)^2}\)

\(c)\) \({\left( {x - y + z} \right)^2} + {\left( {z - y} \right)^2}\)\( + 2\left( {x - y + z} \right)\left( {y - z} \right)\)            

Lời giải

\(a)\) \({\left( {x + y} \right)^2} + {\left( {x - y} \right)^2}\) \( = {x^2} + 2xy + {y^2} + {x^2} - 2xy + {y^2}\)\( = 2{x^2} + 2{y^2}\)

\(b)\) \(2\left( {x - y} \right)\left( {x + y} \right) + {\left( {x + y} \right)^2} + {\left( {x - y} \right)^2}\)

\( = {\left[ {\left( {x + y} \right) + \left( {x - y} \right)} \right]^2} = {\left( {2x} \right)^2} = 4{x^2}\)

\(c)\) \({\left( {x - y + z} \right)^2} + {\left( {z - y} \right)^2}\)\( + 2\left( {x - y + z} \right)\left( {y - z} \right)\)

\(= {\left( {x - y + z} \right)^2} + 2\left( {x - y + z} \right)\left( {y - z} \right) \)\(+ {\left( {y - z} \right)^2}  \)\( = {\left[ {\left( {x - y + z} \right) + \left( {y - z} \right)} \right]^2} = {x^2} \)

Chú ý:

\(\eqalign{
& {\left( {z - y} \right)^2} = {z^2} - 2zy + {y^2}\,\,\,(1) \cr 
& {\left( {y - z} \right)^2} = {y^2} - 2yz + {z^2}\,\,\,(2) \cr 
& \text{Từ (1) và (2)} \Rightarrow {\left( {z - y} \right)^2} = {\left( {y - z} \right)^2} \cr} \)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”