Bài 3.5 phần bài tập bổ sung trang 8 SBT toán 8 tập 1

Đề bài

Chứng minh hằng đẳng thức: \({\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} \)\(+ 3\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)\) 

Lời giải

Biến đổi vế trái:\( {\left( {a + b + c} \right)^3}= {\left[ {\left( {a + b} \right) + c} \right]^3} \)

\(= {\left( {a + b} \right)^3} + 3{\left( {a + b} \right)^2}c \)\(+ 3\left( {a + b} \right){c^2} + {c^3}\)

\(= {a^3} + 3{a^2}b + 3a{b^2} + {b^3} \)\(+ 3\left( {{a^2} + 2ab + {b^2}} \right)c + 3a{c^2} + 3b{c^2} + {c^3}\)

\(= {a^3} + {b^3} + {c^3} + 3{a^2}b + 3a{b^2}\)\( + 3{a^2}c + 6abc + 3{b^2}c + 3a{c^2} + 3b{c^2} \)

\(= {a^3} + {b^3} + {c^3} + 3ab\left( {a + b} \right) \)\(+ 3ac\left( {a + b} \right) + 3bc\left( {a + b} \right) \)\(+ 3{c^2}\left( {a + b} \right)  \)

\(= {a^3} + {b^3} + {c^3} \)\(+ 3\left( {a + b} \right)\left( {ab + ac + bc + {c^2}} \right)\)

\( = {a^3} + {b^3} + {c^3} \)\(+ 3\left( {a + b} \right)\left[ {a\left( {b + c} \right) + c\left( {b + c} \right)} \right]  \)

\(= {a^3} + {b^3} + {c^3} \)\(+ 3\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right)  \)

Vế trái bằng vế phải đẳng thức được chứng minh.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”