\(a)\) Biến đổi vế trái:
\( \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\)\( + \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) \)\( = a{}^3 + {b^3} + {a^3} - {b^3} = 2{a^3} \)
Vế trái bằng vế phải, đẳng thức được chứng minh.
\(b)\) Biến đổi vế phải:
\(\left( {a + b} \right)\left[ {{{\left( {a - b} \right)}^2} + ab} \right] \)\(= \left( {a + b} \right)\left[ {{a^2} - 2ab + {b^2} + ab} \right] \)\(= \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right) = {a^3} + {b^3} \)
Vế phải bằng vế trái, vậy đẳng thức được chứng minh.
\(c)\) Biến đổi vế phải:
\( {\left( {ac + bd} \right)^2} + {\left( {ad - bc} \right)^2} \)\(= {a^2}{c^2} + 2abcd + {b^2}{d^2} + {a^2}{d^2}\)\( - 2abcd + {b^2}{c^2}\)\(= {a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2} \)\(= c^2\left( {{a^2} + {b^2}} \right) + {d^2}\left( {{a^2} + {b^2}} \right) \)\( = \left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right) \)
Vế phải bằng vế trái, đẳng thức được chứng minh.