Ta có:
\((d_{1}) \) \(y = 2x + 3k \Rightarrow \left\{ \matrix{
{a} = 2 \hfill \cr
{b} = 3k \hfill \cr} \right.\)
\((d_{2})\) \(y = \left( {2m + 1} \right)x + 2k - 3 \Rightarrow \left\{ \matrix{
{a'} = 2m + 1 \hfill \cr
{b'} = 2k - 3 \hfill \cr} \right.\)
Hai hàm số đã cho là hàm bậc nhất khi và chỉ khi:
\(\left\{ \matrix{ a \ne 0 \hfill \cr a' \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ 2 \ne 0 \hfill \cr 2m + 1 \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ 2 \ne 0 \hfill \cr 2m \ne - 1 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{ 2 \ne 0 (luôn\ đúng) \hfill \cr m \ne \dfrac{-1}{2} \hfill \cr} \right.\)
a) Hai đường thẳng cắt nhau:
\((d_{1}) \) cắt \((d_{2}) \Leftrightarrow a \ne a'\)
\(\Leftrightarrow 2\neq 2m+1\)
\(\Leftrightarrow 2-1 \neq 2m\)
\(\Leftrightarrow 1 \ne 2m\)
\(\Leftrightarrow m \ne \dfrac{1}{2}\)
Kết hợp điều kiện hàm bậc nhất \(m \ne \pm \dfrac{1}{2}\).
b) Hai đường thẳng song song:
\((d_{1}) // (d_{2}) \Leftrightarrow \left\{\begin{matrix} a=a' \\ b\neq b' \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2=2m+1\\ 3k\neq 2k-3 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2-1=2m\\ 3k-2k\neq -3 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m=\dfrac{1}{2} (thỏa\ mãn)\\ k\neq -3 \end{matrix}\right.\)
Vậy \(m=\dfrac{1}{2}\) và \( k \ne -3\) thì hai đồ thị trên song song.
c) Hai đường thẳng trùng nhau:
\((d_{1})\) \(\equiv\) \((d_{2}) \Leftrightarrow\) \(\left\{ \begin{matrix} a=a' \\ b=b' \end{matrix} \right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2=2m+1\\ 3k= 2k-3 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2-1=2m\\ 3-2k= -3 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2m=1 \\ k=-3 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m=\dfrac{1}{2}(tm) \\ k= -3 \end{matrix}\right.\)
Vậy \(m=\dfrac{1}{2}\) và \(k=-3\) thì đồ thị hai hàm số trên trùng nhau.