Câu 1.
a)
+) Nếu \(x\ge -2\) thì \(\left| {x + 2} \right| = x+2\)
\( \Rightarrow x + 2 = - x \Rightarrow 2x = - 2\)
\( \Rightarrow x = - 2:2 \Rightarrow x = - 1\)
+) Nếu \(x< -2\) thì \(\left| {x + 2} \right| = -x-2\)
\( \Rightarrow -x - 2 = - x \Rightarrow -2 = 0\) (Vô lí)
b)
+) Nếu \(x\ge 0\) thì \(\left| {x } \right| = x\)
\( \Rightarrow x + 3 = x-5 \Rightarrow 3 = -5\) (Vô lí)
+) Nếu \(x< 0\) thì \(\left| {x } \right| = -x\)
\( \Rightarrow x + 3 = -x-5 \Rightarrow 2x = -5-3\)
\(\Rightarrow 2x = - 8\Rightarrow x= -8:2= -4.\)
Câu 2.
a) Trường hợp 1:
\( \Rightarrow \left\{ \matrix{
z - 1 > 0 \hfill \cr
z + 12 < 0 \hfill \cr} \right. \Rightarrow \left\{ \matrix{
z > 1 \hfill \cr
z < - 12 \hfill \cr} \right.\text{(vô lí)}\)
Trường hợp 2:
\( \Rightarrow \left\{ \matrix{
z - 1 < 0 \hfill \cr
z + 12 > 0 \hfill \cr} \right. \Rightarrow \left\{ \matrix{
z < 1 \hfill \cr
z > - 12 \hfill \cr} \right. \)\(\;\Rightarrow z \in {\rm{\{ }} - 11; - 10;...; - 1;0\} \)
b) \(z \in\{ 0, 1, 2, …, 11.\}\)