Đề kiểm tra 15 phút - Đề số 2 - Bài 8 - Chương 1 - Đại số 8

Bài 1. Phân tích các đa thức sau thành nhân tử:

a) \(2bx - 3ay - 6by + ax\)

b) \(x + 2a\left( {x - y} \right) - y\)

c) \(x{y^2} - b{y^2} - ax + ab + {y^2} - a.\)

Bài 2. Tìm x, biết: \(2\left( {x + 3} \right) - {x^2} - 3x = 0.\)

Lời giải

Bài 1.

a) \(2bx - 3ay - 6by + ax \)

\(= \left( {2bx + ax} \right) + \left( { - 3ay - 6by} \right)\)

\( = x\left( {2b + a} \right) - 3y\left( {a + 2b} \right)\)

\(= \left( {a + 2b} \right)\left( {x - 3y} \right)\)

b) \(x + 2a\left( {x - y} \right) - y \)

\(= \left( {x - y} \right) + 2a\left( {x - y} \right)\)

\(= \left( {x - y} \right)\left( {1 + 2a} \right)\)

c) \(x{y^2} - b{y^2} - ax + ab + {y^2} - a \)

\(= \left( {x{y^2} - b{y^2} + {y^2}} \right) + \left( { - ax + ab - a} \right)\)

\( = {y^2}\left( {x - b + 1} \right) - a\left( {x - b + 1} \right) \)

\(= \left( {x - b + 1} \right)\left( {{y^2} - a} \right).\)

Bài 2. Ta có:

\(2\left( {x + 3} \right) - {x^2} - 3x \)

\(= 2\left( {x + 3} \right) - x\left( {x + 3} \right) \)

\(= \left( {x + 3} \right)\left( {2 - x} \right)\)

Vậy \(\left( {x + 3} \right)\left( {2 - x} \right) = 0 \)

\(\Rightarrow x + 3 = 0\)  hoặc \(2 - x = 0\)

\( \Rightarrow x =  - 3\) hoặc \(x = 2.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”