Bài 12 trang 147 SGK Giải tích 12

Tính các tích phân sau bằng phương pháp đổi biến số:

a) \(\displaystyle \int\limits_0^{{\pi  \over 24}} {\tan ({\pi  \over 4} - 4x)dx} \) (đặt \(u = \cos ({\pi  \over 3} - 4x)\) )

b) \(\displaystyle \int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}} \) (đặt \(\displaystyle x = {3 \over 5}\tan t\) )

c) \(\displaystyle \int\limits_0^{{\pi  \over 2}} {{{\sin }^3}} x{\cos ^4}xdx\) (đặt \(u = \cos x\))

d) \(\displaystyle \int\limits_{{{ - \pi } \over 4}}^{{\pi  \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx\) (đặt \(u = \sqrt {1 + \tan x} \) )

Lời giải

a) Ta có: \(\displaystyle I=\int\limits_0^{\frac{\pi }{{24}}} {\tan \left( {\frac{\pi }{3} - 4x} \right)dx}  \) \(\displaystyle = \int\limits_0^{\frac{\pi }{{24}}} {\frac{{\sin \left( {\frac{\pi }{3} - 4x} \right)}}{{\cos \left( {\frac{\pi }{3} - 4x} \right)}}dx} \)

Đặt \(u = \cos \left( {\dfrac{\pi }{3} - 4x} \right)\) \( \Leftrightarrow du = 4\sin \left( {\dfrac{\pi }{3} - 4x} \right)dx\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = \frac{1}{2}\\x = \frac{\pi }{{24}} \Rightarrow u =\frac{{\sqrt 3 }}{2}\end{array} \right.\)

Khi đó: \(\displaystyle I = \int\limits_{\frac{1}{2}}^{\frac{{\sqrt 3 }}{2}} {\frac{{du}}{{4u}}}  = \left. {\frac{1}{4}\ln \left| u \right|} \right|_{\frac{1}{2}}^{\frac{{\sqrt 3 }}{2}} \) \(\displaystyle = \frac{1}{4}\left( {\ln \frac{{\sqrt 3 }}{2} - \ln \frac{1}{2}} \right) = \frac{1}{4}\ln \sqrt 3 \)

b) Đặt \(x = \dfrac{3}{5}\tan t \) \( \displaystyle \Leftrightarrow dx = \frac{3}{{5{{\cos }^2}t}}dt = \frac{3}{5}\left( {{{\tan }^2}t + 1} \right)dt\)

Đổi cận: \(\left\{ \begin{array}{l}x = \frac{{\sqrt 3 }}{5} \Rightarrow t = \frac{\pi }{6}\\x = \frac{3}{5} \Rightarrow t = \frac{\pi }{4}\end{array} \right.\)

\(\displaystyle I = \int\limits_{\frac{{\sqrt 3 }}{5}}^{\frac{3}{5}} {\frac{{dx}}{{9 + 25{x^2}}}} \) \(\displaystyle = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{{3\left( {{{\tan }^2}t + 1} \right)dt}}{{5\left( {9 + 25.\frac{9}{{25}}{{\tan }^2}t} \right)}}} \)

\(\displaystyle I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{{3\left( {{{\tan }^2}t + 1} \right)}}{{5.9\left( {{{\tan }^2}t + 1} \right)}}dt} \) \(\displaystyle = \frac{1}{{15}}\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {dt} = \left. {\frac{t}{{15}}} \right|_{\frac{\pi }{6}}^{\frac{\pi }{4}} = \frac{\pi }{{180}}\)

 c) Ta có: \(I = \int\limits_0^{\frac{\pi }{2}} {{{\sin }^3}x{{\cos }^4}xdx}  \) \(= \int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right){{\cos }^4}x\sin xdx} \)

Đặt \(u = \cos x \Rightarrow du =  - \sin xdx\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Leftrightarrow u = 1\\x = \frac{\pi }{2} \Rightarrow u = 0\end{array} \right.\)

\(\displaystyle \Rightarrow I = - \int\limits_1^0 {\left( {1 - {u^2}} \right){u^4}du} \) \(= \int\limits_0^1 {\left( {{u^4} - {u^6}} \right)du}\)

\(\displaystyle I = \left. {\left( {\frac{{{u^5}}}{5} - \frac{{{u^7}}}{7}} \right)} \right|_0^1 = \frac{2}{{35}}\)

 d) Đặt \(u = \sqrt {1 + \tan x}  \Leftrightarrow {u^2} = 1 + \tan x \) \(\displaystyle \Leftrightarrow 2udu = \frac{1}{{{{\cos }^2}x}}dx\)

Đổi cận: \(\left\{ \begin{array}{l}x = - \frac{\pi }{4} \Rightarrow u = 0\\x = \frac{\pi }{4} \Rightarrow u = \sqrt 2 \end{array} \right.\)

\( \Rightarrow I = \int\limits_0^{\sqrt 2 } {u.2udu}  = 2\int\limits_0^{\sqrt 2 } {{u^2}du} \) \(\displaystyle = 2\left. {\frac{{{u^3}}}{3}} \right|_0^{\sqrt 2 } = \frac{2}{3}.2\sqrt 2  = \frac{{4\sqrt 2 }}{3}\)


Bài Tập và lời giải

Trả lời câu hỏi 1 Bài 4 trang 117 SGK Toán 7 Tập 1
Vẽ thêm tam giác \(A’B’C’\) có :\(A’B’ = 2cm ; \widehat {B'} = {70^o}; B’C’ = 3cm\)Hãy đo để kiểm nghiệm rằng \(AC = A’C’.\) Ta có thể kết luận được tam giác \(ABC\) bằng tam giác \(A’B’C’\) hay không?

Xem lời giải

Trả lời câu hỏi 2 Bài 4 trang 118 SGK Toán 7 Tập 1

Đề bài

Hai tam giác trên hình 80 có bằng nhau không? Vì sao?

Xem lời giải

Trả lời câu hỏi 3 Bài 4 trang 118 SGK Toán 7 Tập 1
Nhìn hình 81 và áp dụng trường hợp bằng nhau cạnh - góc - cạnh, hãy phát biểu một trường hợp bằng nhau của hai tam giác vuông.

Xem lời giải

Bài 24 trang 118 SGK Toán 7 tập 1

Đề bài

Vẽ tam giác \(ABC\) biết \(\widehat{A}= 90^o;AB=AC=3cm.\) Sau đó đo các góc \(B\) và \(C.\)

Xem lời giải

Bài 25 trang 118 SGK Toán 7 tập 1

Đề bài

 Trên mỗi hình sau có các tam giác nào bằng nhau? Vì sao?

Xem lời giải

Bài 26 trang 118 SGK Toán 7 tập 1

Đề bài

 Xét bài toán: 

" Cho tam giác \(ABC, M\) là trung điểm của \(BC.\) Trên tia đối của \(MA\) lấy điểm \( E\) sao cho \(ME=MA.\) Chứng minh rẳng \(AB//CE.\)

Dưới đây là hình vẽ và giả thiết, kết luận của bài toán (h.85)

Hãy sắp xếp lại năm câu sau đây một cách hợp lí để giải bài toán  trên:

1) \(MB = MC\) (giả thiết)

    \(\widehat{AMB}=\widehat{EMC}\) (hai góc đối đỉnh)

    \(MA= ME\) (giả thiết)

2) Do đó \(∆AMB=∆EMC\) (c.g.c)

3)  \(\widehat{MAB}=\widehat{MEC}\) \( \Rightarrow  AB//CE\) (có hai góc bằng nhau ở vị trí so le trong)

4) \(∆AMB=  ∆EMC\) \( \Rightarrow \widehat{MAB}=\widehat{MEC}\) (hai góc tương ứng)

5) \(∆AMB\) và \( ∆EMC\) có:

Xem lời giải

Bài 27 trang 119 SGK Toán 7 tập 1

Đề bài

 Nêu thêm một điều kiện để hai tam giác trong mỗi hình vẽ dưới đây là hai tam giác bằng nhau theo trường hợp cạnh-góc- cạnh.

a) \(∆ABC= ∆ADC\) (h.86);

b) \(∆AMB= ∆EMC\) (H.87)

c) \(∆CAB= ∆DBA\). (h.88)

Xem lời giải

Bài 28 trang 120 SGK Toán 7 tập 1

Đề bài

Trên hình 89 có bao nhiêu tam giác bằng nhau.

Xem lời giải

Bài 29 trang 120 SGK Toán 7 tập 1

Đề bài

Cho góc \(xAy\). Lấy điểm \(B\) trên tia \(Ax\), điểm \(D\) trên tia \(Ay\) sao cho \(AB=AD\).Trên tia \(Bx\) lấy điểm \(E\), trên tia \(Dy\) lấy điểm \(C\) sao cho \(BE=DC\). Chứng minh rằng \(\Delta ABC = \Delta ADE\).

Xem lời giải

Bài 30 trang 120 SGK Toán 7 tập 1
Trên hình 90, các tam giác \(ABC\) và \(A'BC\) có cạnh chung \(BC= 3cm\), \(CA=CA'= 2cm\), \(\widehat{ABC }=\widehat{A'BC }= 30^o\) nhưng hai tam giác đó không bằng nhau.Tại sao ở đây không áp dụng trường hợp cạnh góc cạnh để kết luận \(∆ABC=∆A'BC?\)

Xem lời giải

Bài 31 trang 120 SGK Toán 7 tập 1

Đề bài

Cho đoạn thẳng \(AB\), điểm \(M\) nằm trên đường trung trực của \(AB\). So sánh độ dài các đoạn thẳng \(MA\) và \( MB.\)

Xem lời giải

Bài 32 trang 120 SGK Toán 7 tập 1

Đề bài

 Tìm các tia phân giác trên hình 91. Hãy chứng minh điều đó.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 1 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC có  \(AB = AC\), M là trung điểm của BC. Chứng minh rằng AM vuông góc với BC.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 2 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho đoạn thẳng AB, đường trung trực d của AB tại I, trên cùng một nửa mặt phẳng bờ là đường thẳng AB lấy hai điểm C và D thuộc d (D nằm giữa hai điểm C và I). Hãy so sánh hai góc ADI và góc BDI.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 3 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Trên tia đối của tia MC lấy E sao cho ME = MC. Trên tia đối của tia NB lấy F sao cho NF = NB. Chứng minh A là trung điểm của EF.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 4 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy D sao cho \( \Rightarrow \widehat {AMC} + \widehat {CMD} = {180^o}\), \(CD = AB\). Chứng minh:

a)\(MA = MD.\)

b) Ba điểm A, M, D thẳng hàng.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 5 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho góc  \(\widehat {xOy}\). Lấy A, C thuộc tia Ox sao cho OC< OA. Trên tia Oy lấy B và D sao cho \(OB = OA,\,OD = OC.\)

a) Chứng minh AD = BC và

b) Gọi I là giao điểm của AD và BC. Cho biết IA = IB. Chứng minh OI là tia phân giác của góc \(\widehat {xOy}\).

Xem lời giải

Đề kiểm tra 15 phút - Đề số 6 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho góc bẹt \(\widehat {xOy}\) có phân giác Ot. Trên Ot lấy hai điểm A và B (A nằm giữa O và B). Lấy điểm C thuộc Ox, sao cho OC = OB. Lấy điểm D thuộc Oy sao cho OD = OA. Chứng minh:

a) \(AC= BD\)     

b) \(AC \bot BD.\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 7 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC. Trên tia đối của ác tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB và AE = AC.

a)Chứng minh DE // BC.

b) Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trung điểm của MN.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 8 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho \(\Delta ABC\) có AB = AC, tia phân giác của góc A cắt cạnh BC tại D. Lấy E trên AD. Chứng minh rằng:

a) \(\Delta AEB = \Delta AEC\)

b) ED là tia phân giác của góc \(\widehat {BEC}\)

c) \(AD \bot BC.\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 9 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC có ba góc nhọn, vẽ \(\widehat {EAF} = {120^o} \Rightarrow \widehat {AEF} = \widehat {AFE} = {30^o}. \) \(AH \bot BC\) (H thuộc BC). Từ H vẽ HI, HK lần lượt vuông góc với AB và AC, \(I \in AB,\,K \in AC.\) Trên tia đối của tia IH, KH lần lượt lấy các điểm E, F sao cho \(IE = IH\) và \(KF = KH.\)

a) Chứng minh \(AE = AF.\)

b) Giả sử cho \(\widehat {BAC} = {60^o}\). Hãy tính số đo các góc của .

Xem lời giải

Đề kiểm tra 15 phút - Đề số 10 - Bài 2, 3, 4, 5 - Chương 2 - Hình học 7

Đề bài

Cho góc nhọn \(\widehat {xOy}\). Trên Ox lấy hai điểm A và B sao cho OA < OB. Trên Oy lấy hai điểm C và D sao cho OC = OB; OD = OA. Hai đoạn thẳng AC và BD cắt nhau tại E. Chứng minh rằng:

a) AC = BD.

b) \(\Delta EAB = \Delta EDC\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 11 - Bài 2, 3, 4, 5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC (AB < AC). Gọi M trung điểm của BC. Vẽ BH vuông góc với AM (H thuộc AM) và CK vuông góc với AM (K thuộc AM). Chứng minh rằng BH = CK.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 13 - Bài 2, 3, 4, 5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC. Trên cạnh BC lấy hai điểm D và E sao cho D nằm giữa B và E và BD = CE. Qua D và E vẽ DF và EH song song với AB. (F và H thuộc AC).

Chứng minh rằng: AB = DF + EH.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 14 - Bài 2, 3, 4, 5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC, các tia phân giác của các góc B và C cắt nhau ở I.

a) Biết \(\widehat A = {70^o}\). Tính số đo góc \(\widehat {BIC}.\)

b) Vẽ \(ID \bot AB\) (D thuộc AB), \(IE \bot BC\) (E thuộc BC), \(IF \bot AC\) (F thuộc AC). Chứng minh rằng: \(ID = IE = IF.\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 15 - Bài 2, 3, 4, 5 - Chương 2 - Hình học 7

Đề bài

Cho góc \(\widehat {xOy}\) khác góc bẹt, có Ot là tia phân giác. Qua điểm H thuộc tia Ot kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự ở A và B.

a) Chứng minh OA = OB.

b) Lấy điểm C nằm giữa O và H. AC cắt Oy ở D. Trên tia Ox lấy điểm E sao cho OE = OD. Chứng minh B, C, E thẳng hàng.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 16 - Bài 2, 3, 4, 5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC có  \(\widehat B = \widehat C\). Tia phân giác của góc A cắc BC tại D. Chứng minh:

a) \(\Delta ADB = \Delta ADC\)            

b) \(AD \bot BC\)

Xem lời giải

Đề kiểm tra 15 phút - Đề số 17 - Bài 2, 3, 4, 5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC, đường trung trực d1 của đoạn thẳng BC và đường trung trực d2 của đoạn thẳng AC cắt nhau tại O.

a) Chứng minh \(OA = OB = OC.\)

b) Gọi M là trung điểm của đoạn AB. Chứng minh OM là đường trung trực của đoạn AB.

Xem lời giải

Đề kiểm tra 15 phút - Đề số 18 - Bài 2, 3, 4, 5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC có \(ID = IE.\) \(\widehat A = {60^o}\), các tia phân giác của góc C, B cắt nhau tại I và cắt AB, AC theo thứ tự ở D và E

Xem lời giải

Đề kiểm tra 15 phút - Đề số 19 - Bài 2,3,4,5 - Chương 2 - Hình học 7

Đề bài

Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E. Đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng:

a) \(AD = EF \)

b) \(\Delta ADE = \Delta EFC.\)

Xem lời giải