Bài 41* trang 162 SBT toán 9 tập 1

Đề bài

Cho nửa đường tròn tâm \(O,\) đường kính \(AB.\) Qua điểm \(C\) thuộc nửa đường tròn, kẻ tiếp tuyến \(d\) của đường tròn. Gọi \(E\) và \(F\) lần lượt là chân các đường vuông góc kẻ từ \(A\) đến \(B\) đến \(d.\) Gọi \(H\) là chân đường vuông góc kẻ từ \(C\) đến \(AB.\) Chứng minh rằng:

\(a)\) \(CE = CF;\)

\(b)\) \(AC\) là tia phân giác của góc \(BAE;\)

\(c)\)  \(CH^2 = AE.BF\). 

Lời giải

\(a)\) Ta có: \(OC ⊥d\) ( tính chất tiếp tuyến)

\(AE ⊥ d\;\; (gt)\)

\(BF ⊥ d \;\;(gt)\)

Suy ra:  \(OC // AE // BF \;\;(*)\)

Mà  \(OA = OB (=R)\)

Suy ra:\( CE = CF\) (tính chất đường thẳng song cách đều)

\(b)\) Ta có: \(AE // OC\) (theo \((*)\))

Suy ra:  \(\widehat {OCA} = \widehat {EAC}\) ( hai góc sole trong)      \((1)\)

Ta có: \(OA = OC (=R)\)

Suy ra: \(∆OAC\) cân tại \(O\) \( \Rightarrow \widehat {OCA} = \widehat {OAC}\)  \((2)\)

Từ \((1)\) và \((2)\) suy ra: \(\widehat {EAC} = \widehat {OAC}\)

Vậy \(AC\) là tia phân giác của góc \(OAE\) hay \(AC\) là tia phân giác của góc \(BAE.\)

\(c)\) Tam giác \(ABC\) nội tiếp trong đường tròn \((O)\) có \(AB\) là đường kính nên \(\widehat {ACB} = 90^\circ \)

Tam giác \(ABC\) vuông tại \(C\) có \(CH ⊥ AB.\)

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

\(C{H^2} = HA.HB\;\; (3)\)

Xét hai tam giác \(ACH\) và \(ACE,\) ta có:

+) \(\widehat {AEC} = \widehat {AHC} = 90^\circ \)

+) \(CH = CE\) (tính chất đường phân giác)

+) \(AC\) chung

Suy ra:   \(∆ACH = ∆ACE\) (cạnh huyền, cạnh góc vuông)

Suy ra:   \(AH = AE\;\;(4)\)

Xét hai tam giác \(BCH\) và \(BEF,\) ta có:

+) \(\widehat {BHC} = \widehat {BFC} = 90^\circ \)

+) \(CH = CF (= CE)\)

+) \(BC \)chung

Suy ra: \(∆BCH = ∆BCF\) (cạnh huyền, cạnh góc vuông)

Suy ra:       \(BH = BF  \;\;(5)\)

Từ \((3),\) \((4)\) và \((5)\) suy ra: \(C{H^2} = AE.BF\)