Bài 82 trang 108 SGK Toán 8 tập 1

Cho hình \(107\), trong đó \(ABCD\) là hình vuông. Chứng minh rằng tứ giác \(EFGH\) là hình vuông.

Lời giải

Các tam giác vuông \(AEH, BFE, CGF, DHG\) có:

\(AE = BF = CG = DH\) (1) (gt)

Theo giả thiết \(ABCD\) là hình vuông nên \(AB=BC=CD=DA\)  (2) (tính chất hình vuông)

Mà: \(AH = AD - DH, BE = AB - AE, \)\(CF = BC - BF, DG = DC - CG \) (3)

Từ (1), (2) và (3) suy ra \(AH = BE = CF = DG\)

Suy ra \(∆AEH =  ∆BFE =  ∆CGF \)\(=  ∆DHG\) (hai cạnh góc vuông)

Do đó

\(\widehat{EHA} = \widehat{FEB}\) (hai góc tương ứng bằng nhau)  (4)

\(HE = EF = FG = GH\) ( các cạnh tương ứng)    

 \( \Rightarrow \) Tứ giác \(EFGH\) là hình thoi (dấu hiệu nhận biết hình thoi)             

Xét tam giác \(AHE\) vuông tại \(A\) nên \(\widehat{HEA}\) + \(\widehat{EHA}=90^0\)   (5)

Từ (4) và (5) ta có 

\(\widehat{HEF} = 180^0- (\widehat{HEA}\) + \(\widehat{FEB}) \)

           \(= 180^0- (\widehat{HEA}\) + \(\widehat{EHA})\)

           \(= 180^0- 90^0= 90^0\)

\( \Rightarrow \) Hình thoi \(EFGH\) là hình vuông (dấu hiệu nhận biết hình vuông)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”