a) Ta có:
\(\eqalign{
& \sqrt {{x^2}} = 7 \cr
& \Leftrightarrow \left| x \right| = 7 \cr
& \Leftrightarrow x = \pm 7 \cr} \)
Vậy \(x= \pm 7\).
b) Ta có:
\(\eqalign{
& \sqrt {{x^2}} = \left| { - 8} \right| \cr
& \Leftrightarrow \left| x \right| = 8 \cr
& \Leftrightarrow x = \pm 8 \cr} \)
Vậy \(x= \pm 8 \).
c) Ta có:
\(\eqalign{
& \sqrt {4{x^2}} = 6 \cr
& \Leftrightarrow \sqrt {{2^2}.{x^2}} = 6 \cr
& \Leftrightarrow \sqrt {{{\left( {2x} \right)}^2}} = 6 \cr
& \Leftrightarrow \left| {2x} \right| = 6 \cr
& \Leftrightarrow 2x = \pm 6 \cr
& \Leftrightarrow x = \pm 3 \cr} \)
Vậy \(x= \pm 3 \).
d) Ta có:
\(\eqalign{
& \sqrt {9{x^2}} = \left| { - 12} \right| \cr
& \Leftrightarrow \sqrt {{3^2}.{x^2}} = 12 \cr
& \Leftrightarrow \sqrt {{{\left( {3x} \right)}^2}} = 12 \cr
& \Leftrightarrow \left| {3x} \right| = 12 \cr
& \Leftrightarrow 3x = \pm 12 \cr
& \Leftrightarrow x = \pm 4 \cr} \).
Vậy \(x= \pm 4 \).