Ôn tập chương I – Căn bậc hai. Căn bậc ba

Bài Tập và lời giải

Bài 70 trang 40 SGK Toán 9 tập 1

 Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp

\(\displaystyle a)\sqrt {{{25} \over {81}}.{{16} \over {49}}.{{196} \over 9}}\)                            

\(\displaystyle b)\sqrt {3{1 \over {16}}.2{{14} \over {25}}2{{34} \over {81}}}\)

\(\displaystyle c){{\sqrt {640} .\sqrt {34,3} } \over {\sqrt {567} }}\)                                    

\(d)\sqrt {21,6} .\sqrt {810.} \sqrt {{{11}^2} - {5^2}}\) 

Xem lời giải

Bài 71 trang 40 SGK Toán 9 tập 1

Rút gọn các biểu thức sau:

a)  \(\left( {\sqrt 8  - 3.\sqrt 2  + \sqrt {10} } \right)\sqrt 2  - \sqrt 5 \) 

b)  \(0,2\sqrt {{{\left( { - 10} \right)}^2}.3}  + 2\sqrt {{{\left( {\sqrt 3  - \sqrt 5 } \right)}^2}} \)

c)  \(\displaystyle \left( {{1 \over 2}.\sqrt {{1 \over 2}}  - {3 \over 2}.\sqrt 2  + {4 \over 5}.\sqrt {200} } \right):{1 \over 8}\)

d)  \(2\sqrt {{{\left( {\sqrt 2  - 3} \right)}^2}}  + \sqrt {2.{{\left( { - 3} \right)}^2}}  - 5\sqrt {{{\left( { - 1} \right)}^4}} \)

Xem lời giải

Bài 72 trang 40 SGK Toán 9 tập 1

Phân tích thành nhân tử (với các số x, y, a, b không âm và a ≥ b)

a)  \(xy - y\sqrt x  + \sqrt x  - 1\)

b)  \(\sqrt {ax}  - \sqrt {by}  + \sqrt {bx}  - \sqrt {ay} \)

c)  \(\sqrt {a + b}  + \sqrt {{a^2} - {b^2}} \)

d)  \(12 - \sqrt x  - x\)

Xem lời giải

Bài 73 trang 40 SGK Toán 9 tập 1

Rút gọn rồi tính giá trị của các biểu thức sau:

a) \(\sqrt { - 9{\rm{a}}}  - \sqrt {9 + 12{\rm{a}} + 4{{\rm{a}}^2}}\) tại \(a = - 9\)

b) \(\displaystyle 1 + {{3m} \over {m - 2}}\sqrt {{m^2} - 4m + 4}\) tại \(m = 1,5\)

c) \(\sqrt {1 - 10{\rm{a}} + 25{{\rm{a}}^2}}  - 4{\rm{a}}\) tại \(a = \sqrt 2\)

d) \(4{\rm{x}} - \sqrt {9{{\rm{x}}^2} + 6{\rm{x}} + 1} \) tại  \(x= - \sqrt 3\)

Xem lời giải

Bài 74 trang 40 SGK Toán 9 tập 1

Tìm x, biết:

a) \(\sqrt {{{\left( {2{\rm{x}} - 1} \right)}^2}}  = 3\)

b)  \(\displaystyle {5 \over 3}\sqrt {15{\rm{x}}}  - \sqrt {15{\rm{x}}}  - 2 = {1 \over 3}\sqrt {15{\rm{x}}} \)

Xem lời giải

Bài 75 trang 40 SGK Toán 9 tập 1

Chứng minh các đẳng thức sau: 

a) \(\displaystyle \left( {{{2\sqrt 3  - \sqrt 6 } \over {\sqrt 8  - 2}} - {{\sqrt {216} } \over 3}} \right).{1 \over {\sqrt 6 }} =  - 1,5\)

b) \(\displaystyle \left( {{{\sqrt {14}  - \sqrt 7 } \over {1 - \sqrt 2 }} + {{\sqrt {15}  - \sqrt 5 } \over {1 - \sqrt 3 }}} \right):{1 \over {\sqrt 7  - \sqrt 5 }} =  - 2\)

c) \(\displaystyle {{a\sqrt b  + b\sqrt a } \over {\sqrt {ab} }}:{1 \over {\sqrt a  - \sqrt b }} = a - b\) với a, b dương và a ≠ b

d) \(\displaystyle \left( {1 + {{a + \sqrt a } \over {\sqrt a  + 1}}} \right)\left( {1 - {{a - \sqrt a } \over {\sqrt a  - 1}}} \right) = 1 - a\) với a ≥ 0 và a ≠ 1

Xem lời giải

Bài 76 trang 41 SGK Toán 9 tập 1

Cho biểu thức\(\displaystyle Q = {a \over {\sqrt {{a^2} - {b^2}} }} - \left( {1 + {a \over {\sqrt {{a^2} - {b^2}} }}} \right):{b \over {a - \sqrt {{a^2} - {b^2}} }}\) với a > b > 0

a) Rút gọn Q

b) Xác định giá trị của Q khi a = 3b 

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = \sqrt {{{ - 3} \over {3 - x}}} \)

b. \(B = \sqrt {x + {1 \over x}} \)

Bài 2. Tính :

a. \(M = \left( {\sqrt 2  - \sqrt {3 - \sqrt 5 } } \right)\sqrt 2  + \sqrt {20} \)

b. \(N = \left( {{{\sqrt 6  - \sqrt 2 } \over {1 - \sqrt 3 }} - {5 \over {\sqrt 5 }}} \right):{1 \over {\sqrt 5  - \sqrt 2 }}\)

Bài 3. Cho biểu thức : \(P = {{a\sqrt a } \over {\sqrt a  - 1}} + {1 \over {1 - \sqrt a }}\)   (với \(a ≥ 0\) và \(a ≠ 1)\)

a. Rút gọn biểu thức P.

b. Tính giá trị của biểu thức P tại \(a = {9 \over 4}\)

Bài 4. Tìm x, biết :

a. \(\sqrt {4{x^2} - 4x + 1}  = 3\)

b. \(3\left( {\sqrt x  + 2} \right) + 5 = 4\sqrt {4x}  + 1\)

Bài 5. Tìm x, biết : \(\sqrt {1 - 3x}  < 2\)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện có nghĩa của biểu thức :

a. \(A = {1 \over {\sqrt {x - 3} }}\)

b. \(B = \sqrt {x - 2}  + {1 \over {x - 2}}\)

Bài 2. Chứng minh :

a. \(2\sqrt {2 + \sqrt 3 }  = \sqrt 2  + \sqrt 6 \)

b. \(\sqrt {1 + {{\sqrt 3 } \over 2}}  = {{1 + \sqrt 3 } \over 2}\)

Bài 3. Tính :

a. \(A = \sqrt 2 \left( {\sqrt {21}  + 3} \right).\sqrt {5 - \sqrt {21} } \)

b. \(B = \sqrt 2 \left( {\sqrt 5  - 1} \right).\sqrt {3 + \sqrt 5 } \)

Bài 4. Cho biểu thức \(P = \left( {{1 \over {\sqrt x  + 1}} - {1 \over {x + \sqrt x }}} \right):{{x - \sqrt x  + 1} \over {x\sqrt x  + 1}}\,\)\(\left( {x > 0} \right)\)

a. Rút gọn biểu thức P.

b. Tìm x sao cho \(P < 0\).

Bài 5. Tìm x, biết : \(\left( {3 - 2\sqrt x } \right)\left( {2 + 3\sqrt x } \right) = 16 - 6x\)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = {1 \over {1 - \sqrt {x - 1} }}\)

b. \(B = {1 \over {\sqrt {{x^2} - 2x + 1} }}\)

Bài 2. Rút gọn :

a. \(M = \left( {4 + \sqrt 3 } \right).\sqrt {19 - 8\sqrt 3 } \)

b. \(N = {{\sqrt {8 - \sqrt {15} } } \over {\sqrt {30}  - \sqrt 2 }}\)

Bài 3. Rút gọn biểu thức : \(P = \left( {{{8 - x\sqrt x } \over {2 - \sqrt x }} + 2\sqrt x } \right).{\left( {{{2 - \sqrt x } \over {2 + \sqrt x }}} \right)^2}\,\,\,\)\(\left( {x \ge 0;x \ne 4} \right)\)

Bài 4. Tìm x, biết : \(\left( {3 - \sqrt {2x} } \right).\left( {2 - 3\sqrt {2x} } \right) = 6x - 5\,\left( * \right)\)

Bài 5. Tìm giá trị nhỏ nhất của biểu thức : \(P = \sqrt {{x^2} - 2x + 5} \)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = \sqrt {2 - 4x} \)

b. \(B = \sqrt {{{ - 3} \over {x - 1}}}  + \sqrt {{x^2} + 4} \)

Bài 2. So sánh : \(2 + \sqrt 3 \,\,va\,\,3 + \sqrt 2 \)

Bài 3. a. Rút gọn :  \(P = {{x\sqrt y  + y\sqrt x } \over {\sqrt {xy} }}:{1 \over {\sqrt x  - \sqrt y }}\,\,\,\)\(\left( {x > 0;y > 0;x \ne y} \right)\)

b. Tính P, biết \(x = \sqrt 2  - 1\,\,va\,\,y = \sqrt {9 - 4\sqrt 2 } \)

Bài 4. Tìm x, biết :

a. \(\sqrt {{x^2} + 3}  = x + 1\)

b. \(\sqrt {{x^2} + 1}  \le x + 2\)

Bài 5. Tìm giá trị lớn nhất của biểu thức : \(P = 5 - \sqrt {{x^2} - 6x + 14} \)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 1 - Đại số 9

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = \sqrt {{2 \over {x - 3}}} \)

b. \({1 \over {\sqrt x  - \sqrt y }}\)

Bài 2. Tính : \(C = \sqrt {11 - 4\sqrt 6 }  + \sqrt {11 + 4\sqrt 6 } \)

Bài 3. Rút gọn biểu thức : \(P = {{x\sqrt y  - y\sqrt x } \over {\sqrt x  - \sqrt y }}.{{x\sqrt x  + y\sqrt y } \over {x - \sqrt {xy}  + y}}\,\,\,\)\(\left( {x \ge 0;y \ge 0;x \ne y} \right)\)

Bài 4. Tìm x, biết : \(\sqrt {{x^2} - 2x + 4}  = x + 2\)

Bài 5. Tìm giá trị lớn nhất của biểu thức : \(Q = {1 \over {\sqrt {{x^2} - 4x + 5} }}\)

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 6 - Chương 1 - Đại số 9

Bài 1. Rút gọn :

\(A = \left( {\sqrt 6  + \sqrt {10} } \right).\sqrt {4 - \sqrt {15} } \)

\(B = {{\sqrt 3  + 2} \over {\sqrt 3  - 2}} - {{\sqrt 3  - 2} \over {\sqrt 3  + 2}} + {{8\sqrt 6  - 8\sqrt 3 } \over {\sqrt 2  - 1}}\)

Bài 2. Tính : \(Q = \sqrt {\sqrt 2  + 2\sqrt {\sqrt 2  - 1} } \)\(\, + \sqrt {\sqrt 2  - 2\sqrt {\sqrt 2  - 1} } \)

Bài 3. Tìm x, biết :

a. \(\left( {2 - \sqrt x } \right)\left( {1 + \sqrt x } \right) =  - x + \sqrt 5 \)

b. \(\sqrt {{x^2} + 2x\sqrt 3  + 3}  = \sqrt 3  + x\)

Bài 4. Cho \(A = {1 \over {\sqrt x  + \sqrt {x - 1} }} - {1 \over {\sqrt x  - \sqrt {x - 1} }} - {{x\sqrt x  - x} \over {1 - \sqrt x }}\)

a. Rút gọn biểu thức A

b. Tìm giá trị của x để \(A > 0\).

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”